Nav: Home

First optical rectenna -- combined rectifier and antenna -- converts light to DC current

September 28, 2015

Using nanometer-scale components, researchers have demonstrated the first optical rectenna, a device that combines the functions of an antenna and a rectifier diode to convert light directly into DC current.

Based on multiwall carbon nanotubes and tiny rectifiers fabricated onto them, the optical rectennas could provide a new technology for photodetectors that would operate without the need for cooling, energy harvesters that would convert waste heat to electricity - and ultimately for a new way to efficiently capture solar energy.

In the new devices, developed by engineers at the Georgia Institute of Technology, the carbon nanotubes act as antennas to capture light from the sun or other sources. As the waves of light hit the nanotube antennas, they create an oscillating charge that moves through rectifier devices attached to them. The rectifiers switch on and off at record high petahertz speeds, creating a small direct current.

Billions of rectennas in an array can produce significant current, though the efficiency of the devices demonstrated so far remains below one percent. The researchers hope to boost that output through optimization techniques, and believe that a rectenna with commercial potential may be available within a year.

"We could ultimately make solar cells that are twice as efficient at a cost that is ten times lower, and that is to me an opportunity to change the world in a very big way" said Baratunde Cola, an associate professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. "As a robust, high-temperature detector, these rectennas could be a completely disruptive technology if we can get to one percent efficiency. If we can get to higher efficiencies, we could apply it to energy conversion technologies and solar energy capture."

The research, supported by the Defense Advanced Research Projects Agency (DARPA), the Space and Naval Warfare (SPAWAR) Systems Center and the Army Research Office (ARO), is scheduled to be reported September 28 in the journal Nature Nanotechnology.

Developed in the 1960s and 1970s, rectennas have operated at wavelengths as short as ten microns, but for more than 40 years researchers have been attempting to make devices at optical wavelengths. There were many challenges: making the antennas small enough to couple optical wavelengths, and fabricating a matching rectifier diode small enough and able to operate fast enough to capture the electromagnetic wave oscillations. But the potential of high efficiency and low cost kept scientists working on the technology.

"The physics and the scientific concepts have been out there," said Cola. "Now was the perfect time to try some new things and make a device work, thanks to advances in fabrication technology."

Using metallic multiwall carbon nanotubes and nanoscale fabrication techniques, Cola and collaborators Asha Sharma, Virendra Singh and Thomas Bougher constructed devices that utilize the wave nature of light rather than its particle nature. They also used a long series of tests - and more than a thousand devices - to verify measurements of both current and voltage to confirm the existence of rectenna functions that had been predicted theoretically. The devices operated at a range of temperatures from 5 to 77 degrees Celsius.

Fabricating the rectennas begins with growing forests of vertically-aligned carbon nanotubes on a conductive substrate. Using atomic layer chemical vapor deposition, the nanotubes are coated with an aluminum oxide material to insulate them. Finally, physical vapor deposition is used to deposit optically-transparent thin layers of calcium then aluminum metals atop the nanotube forest. The difference of work functions between the nanotubes and the calcium provides a potential of about two electron volts, enough to drive electrons out of the carbon nanotube antennas when they are excited by light.

In operation, oscillating waves of light pass through the transparent calcium-aluminum electrode and interact with the nanotubes. The metal-insulator-metal junctions at the nanotube tips serve as rectifiers switching on and off at femtosecond intervals, allowing electrons generated by the antenna to flow one way into the top electrode. Ultra-low capacitance, on the order of a few attofarads, enables the 10-nanometer diameter diode to operate at these exceptional frequencies.

"A rectenna is basically an antenna coupled to a diode, but when you move into the optical spectrum, that usually means a nanoscale antenna coupled to a metal-insulator-metal diode," Cola explained. "The closer you can get the antenna to the diode, the more efficient it is. So the ideal structure uses the antenna as one of the metals in the diode - which is the structure we made."

The rectennas fabricated by Cola's group are grown on rigid substrates, but the goal is to grow them on a foil or other material that would produce flexible solar cells or photodetectors.

Cola sees the rectennas built so far as simple proof of principle. He has ideas for how to improve the efficiency by changing the materials, opening the carbon nanotubes to allow multiple conduction channels, and reducing resistance in the structures.

"We think we can reduce the resistance by several orders of magnitude just by improving the fabrication of our device structures," he said. "Based on what others have done and what the theory is showing us, I believe that these devices could get to greater than 40 percent efficiency."
This work was supported by the Defense Advanced Research Projects Agency (DARPA), the Space and Naval Warfare (SPAWAR) Systems Center, Pacific under YFA grant N66001-09-1-2091, and by the Army Research Office (ARO), through the Young Investigator Program (YIP), under agreement W911NF-13-1-0491. The statements in this release are those of the authors and do not necessarily reflect the official views of DARPA, SPAWAR or ARO. Georgia Tech has filed international patent applications related to this work under PCT/US2013/065918 in the United States (U.S.S.N. 14/434,118), Europe (No. 13847632.0), Japan (No. 2015-538110) and China (No. 201380060639.2)

CITATION: Asha Sharma, Virendra Singh, Thomas L. Bougher and Baratunde A. Cola, "A carbon nanotube optical rectenna," (Nature Nanotechnology, 2015).

Georgia Institute of Technology

Related Carbon Nanotubes Articles:

Carbon nanotubes self-assemble into tiny transistors
Carbon nanotubes can be used to make very small electronic devices, but they are difficult to handle.
Reusable carbon nanotubes could be the water filter of the future, says RIT study
Enhanced single-walled carbon nanotubes offer a more effective and sustainable approach to water treatment and remediation than the standard industry materials -- silicon gels and activated carbon -- according to a paper by RIT researchers John-David Rocha and Reginald Rogers.
How to roll a nanotube: Demystifying carbon nanotubes' structure control
A key advancement in the design of high performance carbon-based electronics.
Carbon nanotubes improve metal's longevity under radiation
Carbon nanotubes may improve longevity in nuclear reactors.
New process enables easier isolation of carbon nanotubes
Using this new method, long carbon nanotubes with high structural integrity, and without contaminants, can be obtained.
New device uses carbon nanotubes to snag molecules
Engineers at MIT have devised a new technique for trapping hard-to-detect molecules, using forests of carbon nanotubes.
Future electronics based on carbon nanotubes
A big barrier to building useful electronics with carbon nanotubes has always been the fact that when they're arrayed into films, a certain portion of them will act more like metals than semiconductors.
Can engineered carbon nanotubes help to avert our water crisis?
Carbon nanotube membranes have a bright future in addressing the world's growing need to purify water from the sea, researchers say in a study published in the journal Desalination.
Future flexible electronics based on carbon nanotubes
Researchers have demonstrated a new method to improve the reliability and performance of transistors and circuits based on carbon nanotubes, a semiconductor material that has long been considered by scientists as one of the most promising successors to silicon for smaller, faster and cheaper electronic devices.
Synthesis of structurally pure carbon nanotubes using molecular seeds
For the first time, researchers at Empa and the Max Planck Institute for Solid State Research have succeeded in 'growing' single-wall carbon nanotubes with a single predefined structure -- and hence with identical electronic properties.

Related Carbon Nanotubes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".