Gone fishing: Loss of ocean predators has impact on climate change strategies

September 28, 2015

Continued unsustainable harvesting of large predatory fish, including the culling of sharks, can have far-reaching consequences for the way we tackle climate change.

Professor Rod Connolly, a marine scientist from Griffith University's Australian Rivers Institute, is the co-author of new research that says keeping populations of larger fish intact is critical to carbon accumulation and long-term storage in vegetated coastal habitats such as saltmarsh, mangroves and seagrass.

A paper, "Predators help protect carbon stocks in blue carbon ecosystems", is published in the journal Nature Climate Change and identifies the urgent need for further research on the influence of predators on carbon cycling, and improved policy and management with regard to blue carbon reserves.

The research comes as Australia in particular, in response to a recent spate of shark attacks -- some fatal -- engages in fierce public debate over shark culling.

Professor Connolly warns the loss of top order predators through excessive culling or over-fishing has serious environmental ramifications.

"Altering the numbers of top ocean predators has major consequences for the way we tackle climate change," says Professor Connolly.

"These predators have a cascading effect on the food web and the ecosystem generally that ultimately changes the amount of carbon captured and locked up in the seabed."

Coastal wetlands play a crucial role in this process, extracting carbon from the atmosphere and burying it in the mud for hundreds and even thousands of years.

"When we change the abundance of higher order predators, this affects the number of smaller animals living in the mud, and that has flow-on effects for carbon storage in coastal wetlands," says Professor Connolly.

"We are already aware of the need to manage how many fish we take and from where. But we should also know that our decisions affect climate change.

Professor Connolly says the coastal wetlands that fringe the world's continents are doing a power of environmental good, taking a quarter of a trillion kilograms of carbon out of the atmosphere every year.

However, that efficiency can be easily compromised.

"Predators play an important and potentially irreplaceable role in carbon cycling. The effect of the disproportionate loss of species high in the food chain cannot be underestimated."
-end-
Paper: https://www.scimex.org/newsfeed/loss-of-ocean-predators-has-impact-on-climate-change-strategies2/predators-and-blue-carbon-paper-Nature.pdf

Griffith University

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.