Nav: Home

Why is an object's size perceived the same regardless of changes in distance?

September 28, 2015

A group of researchers at Osaka University found that neurons in the monkey visual cortical area V4*1, one of the areas in the visual cortex, calculate the size of an object based on information on its retinal image size and the distance from the object.

The neural mechanism for the perceptual phenomenon in which size was perceived to be stable even if the distance from the object changed (known as size constancy) was unknown. Many neurons in the visual cortex change their activity according to the size of visual stimulus. It was believed that neurons responded to the size of the image formed on the eye (retinal image); however, size constancy (Figure 1) cannot be achieved by such cells alone.

Ichiro Fujita and Shingo Tanaka, then student in the doctoral course of Graduate School of Frontier Biosciences, Osaka University, examined if there were cells that express not the retinal image size, but the size of the object itself. The group analyzed neuron activity in the monkey's visual cortical area V4 (in Figure 2) and found that cells in this area integrated information about retinal image size and the distance from the object to calculate the size of the object.

When an object is far away, its retinal image size becomes small, and when the object is near, its retinal image size becomes big. If neurons respond to the same retinal image size, even if the distance from the object changes, they are supposed to react to retinal image size. In contrast, if neurons convey information about object size, they are expected to react to the small retinal image when the object is far away and to react to the big retinal image when the object is near. Fujita and Tanaka found that most cells in the visual cortical area V4 reacted well to small stimuli when the stimuli were presented far away and reacted to big stimuli when stimuli were near. This is the property of a cell that expresses object size should have. This group's experiment verified that cells in the visual cortical area V4 do not react to the retinal image size but to the size of the object. These cells are thought to contribute to constancy of the perceived size regardless of changes in distance by conveying certain information about the object's size.

This group's achievements clarified the neural basis of size constancy and are expected to be helpful in improving 3D image-recognition techniques and understanding causes of diseases manifesting size perception disorder.

The results were published in the Journal of Neuroscience website on August 26, 2015.
*1 Visual cortical area V4

There are more than 30 areas of different functions in the visual cortex in humans and monkeys. The visual cortical area V4 is one of them and deals with visual information used for recognizing the object such as shape, color, pattern, binocular disparity, and size.

Osaka University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...