Nav: Home

Ocean circulation rethink solves climate conundrum

September 28, 2015

Researchers from the University of Exeter believe they have solved one of the biggest puzzles in climate science. The new study, published in Nature Geoscience, explains the synchrony observed during glacial periods when low temperatures in the Southern Ocean correspond with low levels of atmospheric carbon dioxide (CO2).

The interdisciplinary study, carried out in collaboration with the University of Tasmania, demonstrates how a reconfiguration of ocean circulation can result in more carbon being stored in the deep ocean that previously thought.

The researchers used a computer model representing the physics of the ocean along with a biogeochemical model of ocean chemistry to show how the so far neglected aspect of changed water buoyancy can make a major contribution to atmospheric CO2.

During an ice age, the glacial conditions on Antarctica mean that the water near to the continent is colder and so less buoyant. The upwelling of warmer water - during which CO2 is lost to the atmosphere - occurs further away from Antarctica enabling carbon dioxide to be drawn down into the ocean, and also producing a larger volume of deep cold water in the Southern Ocean in which carbon can be stored.

Professor Andrew Watson from Geography at the University of Exeter said: "Our study offers a new explanation for a problem that has occupied oceanographers and climate scientists for more than 30 years - what caused atmospheric CO2 to increase and decrease in near-perfect synchrony with the series of glacial cycles that have occurred over the last million years?

"This is a major advance in our understanding of the natural carbon cycle that comes from applying new ideas about how the 'overturning circulation' of the Southern Ocean works."

Professor Geoffrey Vallis from Mathematics at the University of Exeter said: "We combined a model of the ocean circulation with a model of the carbon cycle and obtained a rather striking result, hopefully throwing some new light on an old problem."

The new mechanism provides an explanation for the positive feedback that occurs during an ice age. As the temperature drops, more CO2 is absorbed into the ocean resulting in less atmospheric CO2 and so a reduction in the greenhouse effect, meaning that it gets colder still. And so the cycle continues.

Scientists had previously presumed that the reduced levels of CO2 in the atmosphere during an ice age meant that more CO2 was being stored in the oceans but this new mechanism explains how this can actually occur and why it is that temperatures in a specific region of the world - Antarctica - are so closely linked to the atmospheric CO2 concentration.
-end-
The study received funding from the Royal Society Wolfson Foundation, a Marie Curie fellowship, and the National Science Foundation.

For further information:
University of Exeter
Press Office
+44 (0)1392 722405 or 722062
pressoffice@exeter.ac.uk

About the University of Exeter

The University of Exeter is a Russell Group university that combines world-class research with very high levels of student satisfaction. Exeter has over 19,000 students and is ranked 7th in The Times and The Sunday Times Good University Guide 2016, 9th in the Guardian University Guide 2016 and 10th in The Complete University Guide 2016. In the 2014 Research Excellence Framework (REF), the University ranked 16th nationally, with 98% of its research rated as being of international quality. Exeter was The Sunday Times University of the Year 2012-13.

The University has invested strategically to deliver more than £350 million worth of new facilities across its campuses in the last few years; including landmark new student services centres - the Forum in Exeter and The Exchange on the Penryn Campus in Cornwall, together with world-class new facilities for Biosciences, the Business School and the Environment and Sustainability Institute. There are plans for further investment between now and 2016. http://www.exeter.ac.uk

University of Exeter

Related Ice Age Articles:

Paintings, sunspots and frost fairs: Rethinking the Little Ice Age
The whole concept of the 'Little Ice Age' is 'misleading,' as the changes were small-scale, seasonal and insignificant compared with present-day global warming, a group of solar and climate scientists argue.
Ice age thermostat prevented extreme climate cooling
During the ice ages, an unidentified regulatory mechanism prevented atmospheric CO2 concentrations from falling below a level that could have led to runaway cooling, reports a study conducted by researchers of the ICTA-Universitat Autònoma de Barcelona and published online in Nature Geoscience this week.
Simple rule predicts when an ice age ends
A simple rule can accurately predict when Earth's climate warms out of an ice age, according to new research led by UCL.
How an Ice Age paradox could inform sea level rise predictions
New findings from the University of Michigan explain an Ice Age paradox and add to the mounting evidence that climate change could bring higher seas than most models predict.
Inception of the last ice age
A new model reconstruction shows in exceptional detail the evolution of the Eurasian ice sheet during the last ice age.
Ice age vertebrates had mixed responses to climate change
New research examines how vertebrate species in the eastern United States ranging from snakes to mammals to birds responded to climate change over the last 500,000 years.
Why does our planet experience an ice age every 100,000 years?
Experts from Cardiff University have offered up an explanation as to why our planet began to move in and out of ice ages every 100,000 years.
Siberian larch forests are still linked to the ice age
The Siberian permafrost regions include those areas of the Earth, which heat up very quickly in the course of climate change.
Mars is emerging from an ice age
Radar measurements of Mars' polar ice caps reveal that the mostly dry, dusty planet is emerging from an ice age, following multiple rounds of climate change.
New ice age knowledge
An international team of researchers headed by scientists from the Alfred Wegener Institute has gained new insights into the carbon dioxide exchange between ocean and atmosphere, thus making a significant contribution to solving one of the great scientific mysteries of the ice ages.

Related Ice Age Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".