Nav: Home

Scientists simulate Earth's middle crust to understand earthquakes

September 28, 2015

Researchers have for the first time been able to measure a material's resistance to fracturing from various types of tectonic motions in the Earth's middle crust, a discovery that may lead to better understanding of how large earthquakes and slower moving events interact.

The University of Texas Institute for Geophysics (UTIG), research unit of the Jackson School of Geosciences, spearheaded the discovery. The study was published in the September edition of Nature Geoscience.

Scientists conducted the research using Carbopol, a gel-like substance that can simulate the characteristics of rock formations in the Earth's middle crust because it is simultaneously brittle and malleable.

Researchers performed shear tests on the Carbopol, where a portion of the material is pulled one direction and a portion is pulled in the opposite direction. This is similar to what happens to rock formations in the middle crust during earthquakes or slow-slip events, a type of tectonic movement that resembles an earthquake but happens over a much longer period of time.

Previously, nearly all research into such movements of the Earth's crusts was done by measuring tectonic movement using GPS readings and linking these findings with friction laws. Those observations did not address how rock behaves when it softens under heat and pressure.

"It is not really clear how slow-slip events interact with earthquakes, whether they can trigger earthquakes or it's the other way around - that earthquakes trigger slow-slip events," said Jacqueline Reber, the study's lead author who performed this research as postdoctoral fellow at UTIG, and who is now an assistant professor at Iowa State University.

The research also adds insight into middle crust strain transients, temporary stress on surrounding rock that's caused by tectonic motion.

"By understanding the mechanics of strain transients a little bit better, we eventually hope to get better insight into how they relate to big, catastrophic earthquakes."

Unlike slow slips events, earthquakes - or stick-slip events - occur when surfaces quickly alternate between sticking to each other and sliding over each other.

"While earlier studies focused mostly on frictional behavior as an explanation for strain transients we focus in our work on the impact of rheology (how a material flows under stress), especially when it is semi-brittle," said Reber.

The semi-brittle middle crust can be compared to a candy bar made of nuts and caramel. The nuts represent the brittle rock. The caramel represents the ductile rock.

Researchers exposed Carbopol, in which the ratio between brittle and ductile parts determines how much stress it can take before being permanently deformed or breaking, to forces created by a simple spring-powered shearing apparatus. Lower yield stress induced the Carbonol to imitate hotter, more viscous rock from deeper in the Earth's crust by making it more ductile; at higher yield stress it imitated cooler, more brittle rock.

The tests showed viscous deformation and constant creep movement at lower yield stress and slip-stick behavior at higher yield stress. This highlights the importance of a material's often complex properties for determining the manner and speed it will respond to stress.
-end-
The research team included Reber, Luc L. Lavier, an associate professor in the Jackson School's Department of Geological Sciences and a UTIG research scientist, and Nicholas W. Hayman, a UTIG research scientist.

Funding came from UTIG and Petrobras, a Brazilian energy corporation.

University of Texas at Austin

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
Stress during pregnancy
The environment the unborn child is exposed to inside the womb can have a major effect on her or his development and future health.
New insights into how the brain adapts to stress
New research led by the University of Bristol has found that genes in the brain that play a crucial role in behavioural adaptation to stressful challenges are controlled by epigenetic mechanisms.
Uncertainty can cause more stress than inevitable pain
Knowing that there is a small chance of getting a painful electric shock can lead to significantly more stress than knowing that you will definitely be shocked.
Stress could help activate brown fat
Mild stress stimulates the activity and heat production by brown fat associated with raised cortisol, according to a study published today in Experimental Physiology.
Experiencing major stress makes some older adults better able to handle daily stress
Dealing with a major stressful event appears to make some older adults better able to cope with the ups and downs of day-to-day stress.

Related Stress Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".