Nav: Home

Scientists use microchip approach to visualize human breast cancer proteins

September 28, 2015

A photograph may reveal how something looks, but direct observation can divulge how the objects behave. The difference can mean life or death, especially when it comes to fighting human disease.

To help researchers examine exactly how human diseases work at the molecular level, Virginia Tech Carilion Research Institute scientist Deborah Kelly has developed a new set of tools to peer into the active world of cancer cells at unprecedented resolution.

Kelly and her team published the instructions in Scientific Reports, an open-access journal from the Nature publishing group.

"A single high-resolution snapshot of an isolated protein can only tell us so much, in health or disease," said Kelly, who is also an assistant professor of biological sciences in Virginia Tech's College of Science. "We can learn much more about how a protein works and how its function might be changed in response to a genetic mutation if we can see how it interacts with other molecules."

Kelly and her team developed the new toolkit to examine, in detail, the BRCA1 protein and its associated parts in a near-native environment. The scientists collected the protein and the protein assemblies from the nuclear material of human breast cancer cells.

"This is the first demonstration of our technology, which lets us directly visualize macromolecular regulatory complexes in human patient-derived cancer cells," Kelly said. "We chose initially to study the BRCA1 protein precisely because it accounts for about a quarter of genetic breast and ovarian cancers, and its function is still so poorly understood."

In human cells, BRCA1 is a tumor-suppressing protein that helps repair damaged genetic material when cells grow and divide. BRCA1 helps proofreads the DNA templates and works to correct errors.

Mutations in BRCA1 disrupt normal cellular processes that regulate proper growth and division. The resulting misguided actions in cell growth due to mutated BRCA1 are heavily correlated with breast and ovarian cancers.

"The manner in which BRCA1 works in concert with other protein machinery is ill defined at the molecular level," Kelly said. "And the three-dimensional structures of complexes containing BRCA1 are under-investigated, despite the potential important clinical significance."

Scientists know that the BRCA1 protein can associate with other protein-binding partners to assist with genomic safeguarding.

"It's critical to better understand these associations and how things go wrong in these highly regulated events, which ultimately play a major role in triggering the cancer process," Kelly said.

Kelly and her team developed the microchip-based toolkit to examine the genetic material contained within the breast cancer cells.

They prepped the genetic material and applied it to microchips coated with antibodies raised against the BRCA1 protein. The antibodies specifically recruited the BRCA1 protein assemblies that were tethered to the microchip surface.

Once the protein complexes were tethered in place, the researchers could image them using high-resolution cryo-electron microscopy and get a closer look at the nature of the protein interactions.

"Using innovative biophysical approaches to study active protein complexes, Dr. Kelly and her team have shed new light on how commonly found breast cancer-associated mutations in the BRCA1 gene impact its interaction with components of the transcriptional machinery," said Amy H. Bouton, a University of Virginia professor of microbiology, immunology, and cancer biology, who was not involved in the research.

"This is an important step forward in understanding how common mutations in BRCA1 can impair critical cellular functions that can lead to breast cancer," Bouton added. "Because this approach can be applied to numerous other protein complexes associated with normal and pathological states, the impact of this work will ultimately be felt well beyond the breast cancer field."

Not only did the toolkit allow Kelly and her team to visualize BRCA1 from human-derived cancer cells, but it also allowed them to do it - from cracking open the cells to seeing the proteins - in about 95 minutes. That's compared to the multiple days required by more traditional methods, which have a smaller success rate with limited visualization.

"Dr. Kelly and her team have made a key advance in molecular medicine by developing this new toolkit to investigate protein assemblies natively formed in the context of human diseases," said Michael Friedlander, executive director of the Virginia Tech Carilion Research Institute. "This advance has the potential to open cancer research to a new level of investigation, with the possibility of providing new therapeutic targets and targeting strategies based on high-resolution, high-specificity molecular imaging."
-end-


Virginia Tech

Related Breast Cancer Articles:

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
More Breast Cancer News and Breast Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...