Cancer's hidden vulnerabilities

September 28, 2020

One of the biggest challenges to the development of medical treatments for cancer is the fact that there is no single kind of cancer. Cancers derive from many kinds of cells and tissues, and each have their own characteristics, behaviors, and susceptibilities to anti-cancer drugs. A treatment that works on colon cancer might have little to no effect on lung cancer, for example.

So, to create effective treatments for a cancer, scientists seek insight into what make its cells tick. In a new paper appearing in Nature Communications, Caltech researchers show that a framework they developed, using a specialized type of microscopy, allows them to probe the metabolic processes inside cancer cells.

The work was conducted by researchers from the laboratory of Lu Wei, assistant professor of chemistry, as well as from the Institute for Systems Biology in Seattle and UCLA. It utilizes a technique called Raman spectroscopy in conjunction with its advanced version, stimulated Raman scattering (SRS) microscopy. Raman spectroscopy takes advantage of the natural vibrations that occur in the bonds between the atoms that make up a molecule. In this method, a molecule is bombarded with laser light. As the laser light's photons bounce off the molecule, they gain or lose energy as a result of their interaction with the vibrations in the molecule's bonds. Because each kind of bond in a molecule affects photons in a unique and predictable way, the structure of the molecule can be deduced by how the photons "look" after they bounce off of it. By mapping the distribution of targeted chemical bonds, SRS microscopy then provides imagery of these molecular structures.

Using those combined techniques, Wei and her fellow researchers examined the metabolites present in five cell lines of melanoma commonly used in research. The melanoma cells were chosen, according to Wei, because they have a wide spectrum of metabolic characteristics that can be studied.

By studying the cells' metabolites, the researchers can begin to deduce how their metabolisms work, and how they could be targeted by drugs. This is similar to how a saboteur might gather information about the machinery in a factory in order to plan where they can cause the most damage.

"The question we are interested in is why all the cancer cells we look at have very different behaviors," Wei says. "Because some cells have higher reliance on some metabolic pathways, they are more susceptible to disruption of those pathways."

Wei says the team uncovered a few new metabolic susceptibilities in cancer cells, including fatty acid synthesis and mono-unsaturation, but adds that right now, the primary purpose of the research is to do fundamental science.

"We've introduced a framework of pushing Raman spectroscopy into systems biology," she says. "And we're using sub-cellular information we've gathered with it to guide our study into pharmacometabolomics--the study of how metabolism affects drugs."

James R. Heath of the Institute for Systems Biology in Seattle and co-author on the paper says this new technology allows researchers to obtain a more detailed look inside cancer cells than ever before.

"The chemical imaging methods developed in Lu's lab allowed us to identify druggable metabolic susceptibilities in some very aggressive cancer models. These metabolic weaknesses would be missed by any other analytical approach," Heath says.
-end-
The paper about their findings, titled, "Raman-guided Subcellular Pharmaco-Metabolomics for Metastatic Melanoma Cells," appears in the September 24 issue of Nature Communications. In addition to Heath, Wei's co-authors are chemistry graduate students Jiajun Du and Kun Miao, and chemical engineering graduate student Dongkwan Lee; Postdoctoral Scholar Research Associate in Chemistry Chenxi Qian; former postdoctoral scholar in biogeochemistry Reto S. Wijker; Yapeng Su (MS '16, PhD '20), Dan Yuan, and former postdoctoral scholar in chemistry Alphonsus H. C. Ng of the Institute for Systems Biology in Seattle; and Antoni Ribas and Raphael D. Levine of UCLA.

Funding for the research was provided by the National Institutes of Health, the Parker Institute for Cancer Immunotherapy, Washington State's Andy Hill CARE Foundation, and the Institute for Systems Biology Innovator Award Program.

California Institute of Technology

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.