Stable supramolecular structure system to identify activity origin of CO2 electroreduction

September 28, 2020

CO2 electroreduction reaction driven by renewable electricity is an effective way to reduce the concentration of CO2 in the atmosphere and alleviate environmental problems such as global warming. It can convert CO2 into valuable products (such as CO, HCOOH, CH4) to realize effective carbon cycle. At present, the reported highly efficient electrocatalysts for electrocatalytic CO2 reduction reaction (CO2RR) are mainly concentrated on nanomaterials. Among them, N-doped or N-heterocyclic nanostructured electrocatalysts have made important progress in reduction product conversion and Faraday efficiency. However, due to the lack of accurate and clear structural information and other influencing factors (including defects and impurities), it is still difficult to determine the activity of N sites in these electrocatalysts.

In this case, the crystal electrocatalysts with clear crystal structure have great advantages in solving the above problems, because their accurate structure information can provide a visual research platform for identifying catalytic active sites and studying reaction mechanism. Metalloporphyrin complexes applied in CO2RR have many advantages. Among them, the rigid ring with conjugated π - electron system of metalloporphyrin is favorable to the rapid electron migration. More importantly, their clear molecular structure information and structural tunability are very helpful for studying reaction mechanisms and rationally optimizing catalytic performance.

Based on this, establishing a reasonable crystal model system to accurately identify the activity of catalytic sites in electrocatalysis is very important for the development of electrocatalytic CO2RR.

In a new research paper published in National Science Review (NSR), the research group of professor Ya-Qian Lan of Nanjing Normal University, for the first time, established a crystal supramolecular coordination compound model system (including Ni-TPYP, Ni-TPYP-1 and Ni-TPP, as shown in Figure 1) to identify structurally the catalytic activity of pyridine N for electrocatalytic CO2RR. This work is of great significance for understanding the catalytic activity and reaction mechanism of N-doped or N-heterocyclic nanostructured electrocatalysts in electrocatalytic CO2RR.

Experimental and theoretical calculations show that the rate determining step (RDS) of electrocatalytic CO2RR in this system is the formation of *COOH. In this step, the energy required for Ni active site (denoted as Ni1) in Ni-TPYP and Ni active site (denoted as Ni2) in Ni-TPP are almost the same (1.60 eV and 1.59 eV) and both are higher than that of active pyridine N (denoted as N, 0.97 eV) in Ni-TPYP, indicating that N site has higher CO2 electroreduction activity than Ni2 and Ni1 sites, that is, active pyridine N is a more suitable catalytic active site.
-end-
See the article: Sheng-Nan Sun,† Ning Li,† Jiang Liu,* Wen-Xin Ji, Long-Zhang Dong, Yi-Rong Wang, and Ya-Qian Lan* Identification of the Activity Source of CO2 Electroreduction by Strategic Catalytic Site Distribution in Stable Supramolecular Structure System https://doi.org/10.1093/nsr/nwaa195

Science China Press

Related Catalytic Activity Articles from Brightsurf:

Successful improvement of the catalytic activity of photosynthetic CO2 fixing enzyme Rubisco
A research group consisting of Associate Professor FUKAYAMA Hiroshi (Kobe University) and Professor MATSUMURA Hiroyoshi (Ritsumeikan University) et al. have succeeded in greatly increasing the catalytic activity of Rubisco, the enzyme which fixes carbon from CO2 in plant photosynthesis.

Heat smarter, not harder -- How microwaves make catalytic reactions more efficient
Scientists at Tokyo Institute of Technology (Tokyo Tech) and International Christian University (ICU) demonstrate a synchrotron X-ray spectroscopy-based method by which the local temperatures of metal nanoparticles can be measured under microwaves.

Tandem catalytic system efficiently converts carbon dioxide to methanol
Boston College chemists have used a tandem catalytic system to efficiently convert carbon dioxide to methanol.

Dancing chemicals: Innovative catalytic reaction for low-cost synthesis of aromatic esters
Aromatic esters are a versatile group of compounds that are commonly used as feedstock in the chemical industry.

Newly designed ligands for a catalytic reaction to synthesize drugs and useful compounds
In a new study, scientists at Gwangju Institute of Science and Technology developed novel ligand molecules, which facilitate a catalytic reaction that generates useful compounds called chromanones.

Scientists reveal hidden catalytic surface of Ni-Au core-shell in CO2 hydrogenation
Dr. LIU Wei and his colleagues from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have found that the core-shell configuration of a Ni-Au catalyst was lost during the actual reaction and recovered afterwards.

Scientists reveal catalytic mechanism of lovastatin hydrolase
The research team led by Prof. LU Xuefeng from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), revealed the catalytic mechanism and structure-function relationship of the specific and efficient lovastatin hydrolase PcEST.

Catalytic protocells get zingy
Artificial cells capable of oxygen gas production and chemical signalling have been prepared using a combination of synthetic and biological catalysts through an international collaboration between the University of Bristol and the University of Padua in Italy.

Imaging technique gives catalytic 2D material engineering a better view
A scanning electrochemical cell imaging technique shows how nanoscale structural features affect the catalytic activity of MoS2 monolayers for hydrogen evolution reactions, report researchers at Kanazawa University in Angewandte Chemie International Edition.

Smart reactions through online design of catalytic pockets
Mapping the three-dimensional structure of catalytic centers helps to design new and improved catalysts.

Read More: Catalytic Activity News and Catalytic Activity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.