Oligomeric materials to enhance water splitting

September 28, 2020

Researchers from the Llobet group have developed a new molecular material made out of oligomers and used it as a catalyst in water oxidation, achieving unprecedented current densities for molecular catalysts. The paper "Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes" has been published in Nature Chemistry.

The generation of electro-anodes and cathodes for water splitting devices based on molecular complexes anchored onto solid surfaces is gaining traction thanks to their versatile and modular properties through ligand design. After studying the catalytic behaviour of oligomers of general formula {[Ru(tda)(4,4'- bpy)]n(4,4'-bpy)} (where n is 1, 2, 4, 5 or 15), the scientists from ICIQ's Llobet team set out to anchor them onto graphitic surfaces. "We decided to design an oligomeric material based on our powerful Ru(tda) catalyst to move from homogeneous to heterogeneous applications. We had to anchor the catalyst on a surface to find a tangible application on water-splitting devices," explains Marcos Gil-Sepulcre, postdoctoral researcher and group coordinator at the Llobet group and first co-author of the paper.

In collaboration with international partners such as Johannes Elemans at the Institute for Molecules and Materials Radboud University and Christina Scheu at the Max-Planck-Institut fu?r Eisenforschung GmbH in Du?sseldorf, the scientists carried out multiple Microscopy studies to characterize the hybrid materials. In addition, Grazing-incidence small-angle X-ray scattering (GIWAXS) was carried out at the Alba synchrotron by Marc Malfois and Eduardo Solano. Further, Density-functional theory (DFT) calculations, conducted by the ICIQ Maseras group, to explore the nature of the interaction between the oligomers and the graphitic surfaces. X-ray absorption spectroscopic (XAS) measurements were also employed, in collaboration with the group of D. Moonshiram at IMDEA Nanociencia, to analyse the oligomers at the graphitic surfaces, and evaluate their fate during and after catalysis. This way the researchers confirmed the molecular nature of the oligomer and found out that it is adsorbed to the graphitic surface via aromatic catalyst-surface C-H-π interactions - an anchoring strategy that has never been described for molecular catalysts up to now.

A single monomer of the oligomer employed is unable to anchor because its interactions with the surface are too weak. Finding strength in numbers, once multiple units are introduced, the large number of C-H-π interactions stabilise the whole chain. The conformation of the hybrid material (a nanotube surrounded by oligomers) is the reason behind its high efficiency: all the ruthenium atoms in the oligomers are active catalytic centres - as opposed to dumping tones of oxides on electrodes as usually done in material science.

The resulting hybrid molecular material behaves as a rugged and powerful electro-anode for the water oxidation reaction achieving unprecedented current densities for molecular catalysts in the whole range of pH, but especially at neutral pH. "To our knowledge, there's no coordination polymer, MOF or COF, or organometallic material that works under neutral conditions, gives these currents and is stable," claims Gil-Sepulcre.

The work provides the basis for designing robust and efficient hybrid molecular electro-anode materials for the oxidation of water-based on Ru complexes, that can be extended to other transition metals and other catalytic reactions. The team is already working on implementing the hybrid material on photoelectrochemical cells to test its applications in a water-splitting device.
-end-


Institute of Chemical Research of Catalonia (ICIQ)

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.