Antiferromagnet lattice arrangements influence phase transitions

September 28, 2020

New research published in EPJ B reveals that the nature of the boundary at which an antiferromagnet transitions to a state of disorder slightly depends on the geometry of its lattice arrangement.

Calculations involving 'imaginary' magnetic fields show how the transitioning behaviours of antiferromagnets are subtly shaped by their lattice arrangements.

Antiferromagnets contain orderly lattices of atoms and molecules, whose magnetic moments are always pointed in exactly opposite directions to those of their neighbours.

These materials are driven to transition to other, more disorderly quantum states of matter, or 'phases,' by the quantum fluctuations of their atoms and molecules - but so far, the precise nature of this process hasn't been fully explored. Through new research published in EPJ B, Yoshihiro Nishiyama at Okayama University in Japan has found that the nature of the boundary at which this transition occurs depends on the geometry of an antiferromagnet's lattice arrangement.

Nishiyama's discovery could enable physicists to apply antiferromagnets in a wider variety of contexts within material and quantum physics. His calculations concerned the 'fidelity' of the materials, which refers in this case to the degree of overlap between the ground states of their interacting lattice components. Furthermore, the fidelity 'susceptibility' describes the degree to which this overlap is influenced by an applied magnetic field. Since susceptibility is driven by quantum fluctuations, it can be expressed within the language of statistical mechanics - describing how macroscopic observations can arise from the combined influences of many microscopic vibrations.

This makes it a useful probe of how antiferromagnet phase transitions are driven by quantum fluctuations.

Using advanced mathematical techniques, Nishiyama calculated how the susceptibility is affected by 'imaginary' magnetic fields - which do not influence the physical world, but are crucial for describing the statistical mechanics of phase transitions. By applying this technique to an antiferromagnet arranged in a honeycomb lattice, he revealed that the transition between orderly, anti-aligned magnetic moments, and a state of disorder, occurs across a boundary with a different shape to that associated with the same transition in a square lattice. By clarifying how the geometric arrangement of lattice components has a subtle influence on this point of transition, Nishiyama's work could advance physicists' understanding of the statistical mechanics of antiferromagnets.

Y Nishiyama (2020), Fidelity-susceptibility analysis of the honeycomb-lattice Ising antiferromagnet under the imaginary magnetic field, European Physical Journal B 93:174, DOI: 10.1140/epjb/e2020-10264-5


Sabine Lehr
Springer Physics Editorial
Tel: +49-6221-4487-8336


Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to