Nav: Home

Evolutionary and heritable axes shape our brain

September 28, 2020

The location of a country on the earth says a lot about its climate, its neighboring countries, and the resources that might be found there. The location therefore determines what kind of country you would expect to find at that point.

The same seems to apply to the brain. Every network is located at a certain place, which determines its function and neighbors but also the kind of function that occurs there. However, the rules that describe the relationships different brain regions have to each-other were not well understood until now. Scientists at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany, and the Forschungszentrum Juelich, together with an international team of collaborators, have deciphered two axes along which the human brain is organized. It was found that these axes are mainly determined by genetic factors.

One axis stretches from the posterior (back) to the frontal part of the cortex. This reflects a functional hierarchy from basic capabilities such as vision and movement to abstract, highly complex skills such as cognition, memory, and social skills. A second axis leads from the dorsal (upper) to the ventral (lower) part of the cortex. Whereas the ventral system has been associated with functions assigning meaning and motivation, the dorsal system may relate to space, time, and movement.

"Interestingly, this vertical arrangement aligns with the long-held hypothesis of dual origin", says Sofie Valk, research group leader at the MPI CBS and Forschungszentrum Juelich and first author of the study, published in Science Advances. According to this hypothesis, the cerebral cortex developed from two different origins, the amygdala and olfactory cortex on the one hand and the hippocampus on the other hand. From these origins two different lines of cortical development arose, reflecting waves from less to more differentiated areas starting at each origin. Such distinctions between ventral and dorsal areas have been found in various mammals, such as non-human primates, cats, and rats. The scientists around Valk, however, have now provided evidence for it for the entire human cortex, and shown this may be a second important organizational principle next to the posterior-frontal axis.

This two-axis-organization, in turn, is largely determined by the genetic relation between brain regions. This means that the association between the structure of two brain regions is driven by shared genetic effects. Moreover, similar axes have been found in the brains of macaque monkeys, indicating these axes are conserved through primate evolution. "At the same time, even if genes and evolution shape the organization of brain structure, we must not forget the environment also plays a crucial role in shaping our brains and minds", Valk says. "Though we focused specifically on these genetic effects in the current study, other work of our team has shown that behavioral training can also alter brain structure." Further studies are planned to understand how these two factors that shape brain structure interact.

To understand the major axes of brain organization is like having a compass, and can help to better navigate in the brain. "We may better understand the evolution and function of specific regions and better evaluate the impact of brain disorders", Valk adds. For example, previous work of the authors has shown that organizational axes differ between individuals with autism spectrum disorder and healthy controls.

The scientists have investigated the organization of brain structure using a multi-level approach. First, they used monozygotic and dizygotic twins, as well as unrelated persons, to model how much of the brain's organization is genetically determined. They measured how the thickness of the cortex correlated across a group of individuals, which provided information on the structural and developmental relationship between different brain regions. If, for example, certain relationships were stronger in monozygotic twins than in other siblings, this would presumably be due to genetic factors. Using the genetic information of the relationships between different brain regions, they computed the major axes along which genetically similar brain structures are organized. They also compared the brain organization in humans with that in macaque monkeys. Finding similar axes in these animals, they concluded that this organization is conserved across primate evolution.
-end-


Max Planck Institute for Human Cognitive and Brain Sciences

Related Evolution Articles:

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.
Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.
How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.