Nav: Home

USC-led study traces the evolution of gill covers

September 28, 2020

The emergence of jaws in primitive fish allowed vertebrates to become top predators. What is less appreciated is another evolutionary innovation that may have been just as important for the success of early vertebrates: the formation of covers to protect and pump water over the gills. In a new study published in the Proceedings of the National Academy of the Sciences (PNAS), USC Stem Cell scientists and their collaborators have identified a key modification to the genome that led to the evolution of gill covers more than 430 million years ago.

The scientists started by creating zebrafish with mutations in a gene called Pou3f3. Strikingly, fish lacking this gene, or the DNA element controlling its activity in the gills, failed to form gill covers. Conversely, zebrafish producing too much Pou3f3 developed extra rudimentary gill covers.

Intrigued by these findings, co-corresponding authors Gage Crump and Lindsey Barske collaborated with scientists from several universities to explore whether changes in Pou3f3 might account for the wide variation in gill covers across vertebrates. Crump is a professor of stem cell biology and regenerative medicine at the Keck School of Medicine of USC. Barske initiated the study in the Crump Lab, and is now an assistant professor at Cincinnati Children's Hospital Medical Center.

In jawless fish such as sea lampreys, which lack gill covers, the scientists found that the control element to produce Pou3f3 in the gill region is missing.

In contrast, in cartilaginous fish such as sharks and skates, the control element for Pou3f3 is active in all gills. Correspondingly, nearly all cartilaginous fish have a separate cover over each gill. In bony fish, including zebrafish, the control element produces Pou3f3 in one particular region, leading to a single cover for all gills.

"Remarkably, we have identified not only a gene responsible for gill cover formation," said Crump, "but also the ancient control element that allowed Pou3f3 to first make gill covers and then diversify them in cartilaginous versus bony fish."

Barske and Crump even showed that humans retain this control element, reflecting the presence of gill cover-like structures in human embryos that are inherited from our distant fish ancestors.
-end-
About the Study

Additional authors were Peter Fabian, Pengfei Xu, Nellie Nelson, and Haoze Vincent Yu from USC; Tyler Square, David Jandzik, and Daniel M. Medeiros from the University of Colorado; Christine Hirschberger from the University of Cambridge, UK; and J. Andrew Gillis from the University of Cambridge and the Marine Biological Laboratory, Woods Hole.

Funding was provided by the National Institute of Dental and Craniofacial Research (R35 DE027550, R00 DE026239, and R21 DE025940A), the National Institute on Deafness and Other Communication Disorders (R01 DC015829), the National Science Foundation (IOS 1744837), the A.P. Giannini Foundation, the Cincinnati Children's Research Foundation, the Scientific Grant Agency of Slovak Republic (VEGA 1/0415/17), a Royal Society University Research Fellowship (UF130182), a Isaac Newton Trust award (14.23z), and a BBSRC Doctoral Training Partnership studentship. The bioinformatics software and computing resources were funded by the USC Office of Research, the USC Norris Medical Library, Cincinnati Children's Research Foundation, and the Hearing Health Foundation

Keck School of Medicine of USC

Related Evolution Articles:

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.
Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.
How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.