Cancer gene is normally a 'carpenter' in the cell

September 28, 1999

DURHAM, N.C. -- A gene whose malfunction causes several leukemias normally functions as a "molecular carpenter," Duke pharmacologists have discovered. The gene, called c-Abl, triggers other molecules that construct the internal framework of cells.

According to the scientists, this discovery of c-Abl's normal function could reveal new targets for cancer drugs, and it also hints at a role for c-Abl in the brain, in building nerve cells and aiding their movement.

In an article in the September issue of Genes & Development, the researchers reported that c-Abl is mainly switched on by another protein called Src, which is also known to cause cancer when it malfunctions. Src, in turn, is activated by external growth factors such as PDGF and EGF. Growth factors are substances outside the cell that trigger them to proliferate. Once activated, c-Abl itself acts as a trigger for the cell to reorganize the internal framework, called the cytoskeleton, that gives cells their shape and allows them to move.

"We have long understood many of the things that the oncogenic, or cancer-causing, forms, of c-Abl do," said Ann Marie Pendergast, associate professor of pharmacology and cancer biology, who led the research. "But because we did not know the normal function of c-Abl, we have been missing a critical part of the picture of how the cancer-causing forms take over the cell's machinery. "If we knew how c-Abl functioned normally, we would know more precisely how the oncogenic forms alter cell function."

Lead author on the Genes & Development paper is postdoctoral fellow Rina Pattner, and other authors besides Pendergast are Lisa Kadlec, Kris DeMali and Andrius Kazlauskas. Their work was supported by the National Cancer Institute and by the Glaxo Wellcome Collaborative Program in Cancer Research.

According to Pendergast, studies over the last decade had revealed c-Abl's key role in producing two forms of leukemia--chronic myelogeneous leukemia and acute lymphoblastic leukemia. Basically, these leukemias occur when chromosomes in dividing white blood cells become snipped apart and restitched incorrectly, with the c-Abl gene becoming linked to a gene called BCR that switches c-Abl on, causing the blood cells to proliferate out of control.

However, the normal role of c-Abl remained unknown, despite studies in other laboratories that linked the homolog of c-Abl in fruit flies with the growth of nerve cells and the metabolic pathways governing formation and rearrangement of the cytoskeleton.

In their experiments, the Duke Medical Center researchers basically explored the effects of genetically manipulating mouse cells called fibroblasts to alter the levels of the growth factors and the protein enzymes produced by c-Abl and Src. Both these enzymes are chemical switches called tyrosine kinases, that trigger other proteins by adding a phosphate to the amino acid tyrosine that is part of the protein.

By altering levels of the growth factors and Src, in the mouse cells and observing the effects on c-Abl, the scientists could determine whether they were part of the normal pathway by which c-Abl functioned.

The pharmacologists' measurements revealed that the growth factors and the Src protein did trigger the activity of c-Abl protein. What's more, their studies revealed that the Src added phosphate to the c-Abl protein, the normal action of a kinase triggering another enzyme.

The scientists also found hints of another pathway by which the growth factors activate c-Abl without triggering Src.

Finally, they found that c-Abl was necessary for cells to undergo cytoskeletal reorganization in response to PDGF. For example, when fibroblast cells that lacked c-Abl were "starved" of serum and then the PDGF growth factor was added, they were unable to remodel their cytoskeleton, as revealed by microscopic studies. However, cells with c-Abl did show such remodeling.

"This finding is the very first example of a response to c-Abl activation that can be connected to a biological response," Pendergast said. The work of other researchers showed that neuroepithelial cells derived from mice that lack c-Abl kinases have a disorganized cytoskeleton. This observation implies that c-Abl may have a role in brain cell development and function.

"In general, our findings reveal that c-Abl acts downstream of growth factor receptors, telling us how oncogenic forms of c-Abl take over the normal cell proliferation pathway," Pendergast said. "Importantly, they also show how Src activates c-Abl.

"Since an oncogenic form of Src has been implicated in some advanced colon cancers, it means that drugs now undergoing clinical trials to treat leukemia by blocking c-Abl kinase activity may also be used to treat these colon cancers."

According to Pendergast, the Src and c-Abl metabolic pathways are likely far more complicated and branched than the scientists now understand. So, they have embarked on further studies to trace those pathways, the details of the enzymatic reactions and specifically how the c-Abl protein connects with the proteins that actually construct the cytoskeleton.

"If we succeed, this will be the first demonstration of how a tyrosine kinase actually can control cytoskeleton remodeling, by acting on the specific molecules that actually do the remodeling," Pendergast said.

Also, said Pendergast, the finding of a role for c-Abl kinases in brain function may have clinical implications.

"I think we're going to find that this molecule is important in a lot of basic processes, perhaps including neurodegenerative diseases," she said.

Duke University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to