2003 ozone 'hole' approaches, but falls short of record

September 29, 2003

This year's Antarctic ozone hole is the second largest ever observed, according to scientists from NASA, the National Oceanic and Atmospheric Administration (NOAA), and the Naval Research Laboratory.

The Antarctic ozone hole is defined as thinning of the ozone layer over the continent to levels significantly below pre-1979 levels. Ozone blocks harmful ultraviolet "B" rays. Loss of stratospheric ozone has been linked to skin cancer in humans and other adverse biological effects on plants and animals.

The size of this year's hole reached 10.9 million square miles on September 11, 2003. It was slightly larger than the North American continent, but smaller than the largest hole ever recorded, on September 10, 2000, when it covered 11.5 million square miles. Last year the ozone hole was smaller, covering 8.1 million square miles.

NASA's Earth Probe Total Ozone Mapping Spectrometer and the NOAA-16 Solar Backscatter Ultraviolet instrument provided ozone measurements from space. These data were coupled with data collected by NOAA's Climate Monitoring and Diagnostics Laboratory (CMDL) from balloon-borne instruments, which measure the ozone hole's vertical structure.

NASA's own scientist Paul Newman said, "While chlorine and bromine chemicals cause the ozone hole, extremely cold temperatures, especially near the edge of Antarctica, are also key factors in ozone loss."

Given the leveling or slowly declining atmospheric abundance of ozone-destroying gases, the year-to-year changes in the size and depth of the ozone hole are dominated by the year-to-year variations in temperature in this part of the atmosphere. The fact this year's ozone loss is much greater than last year's reflects the very different meteorological conditions between these two years.

NASA scientist Rich McPeters said ozone observations showed the total amount of ozone from surface to space was 106 Dobson Units (DU) on September 14, 2003, the minimum value reached this year. "Dobson units" measure the "thickness" of protective ozone in the stratosphere. They range from 100 DU to 500 DU, which translate to about 1 millimeter (1/25 inch) to 5 millimeters (1/5 inch) of ozone in a layer.

Bryan Johnson of CMDL said the ozone depletion region, from 7-to-14 miles above the Earth, has large losses, similar to losses seen in the 1990s. If the stratospheric temperature remains cold over the pole, then we should see complete ozone loss in the 9-13 mile layer, with total column ozone reaching 100 DU by early October.

The Montreal Protocol and its amendments banned chlorine-containing chlorofluorocarbons (CFCs) and bromine-containing halons in 1995, because of their destructive effect on the ozone. However, CFCs and halons are extremely long-lived and still linger at high concentrations in the atmosphere. However, the atmospheric abundances of ozone destroying chemicals are beginning to decline. As a result, the Antarctic ozone hole should disappear in about 50 years.
-end-
NASA's Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.

NOAA is dedicated to enhancing economic security and national safety through the prediction and research of weather and climate-related events and providing environmental stewardship of our nation's coastal and marine resources.

Elvia H. Thompson
Headquarters, Washington
(Phone: 202/358-1696)

Carmeyia Gillis
NOAA Climate Prediction Center, Camp Springs, Md.
(Phone: 301/763-8000, ext. 7163)

Dick Thompson
Naval Research Laboratory, Washington
(Phone: 202/767-1936)

NASA/Goddard Space Flight Center

Related Ozone Articles from Brightsurf:

Investigating the causes of the ozone levels in the Valderejo Nature Reserve
The UPV/EHU's Atmospheric Research Group (GIA) has presented a database comprising over 60 volatile organic compounds (VOC) measured continuously over the last ten years in the Valderejo Nature Reserve (Álava, Basque Country).

FSU Research: Despite less ozone pollution, not all plants benefit
Policies and new technologies have reduced emissions of precursor gases that lead to ozone air pollution, but despite those improvements, the amount of ozone that plants are taking in has not followed the same trend, according to Florida State University researchers.

Iodine may slow ozone layer recovery
Air pollution and iodine from the ocean contribute to damage of Earth's ozone layer.

Ozone threat from climate change
We know the recent extreme heat is something that we can expect more of as a result of increasing temperatures due to climate change.

Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.

How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.

New threat to ozone recovery
A new MIT study, published in Nature Geoscience, identifies another threat to the ozone layer's recovery: chloroform -- a colorless, sweet-smelling compound that is primarily used in the manufacturing of products such as Teflon and various refrigerants.

Ozone hole modest despite optimum conditions for ozone depletion
The ozone hole that forms in the upper atmosphere over Antarctica each September was slightly above average size in 2018, NOAA and NASA scientists reported today.

Increased UV from ozone depletion sterilizes trees
UC Berkeley paleobotanists put dwarf, bonsai pine trees in growth chambers and subjected them to up to 13 times the UV-B radiation Earth experiences today, simulating conditions that likely existed 252 million years ago during the planet's worst mass extinction.

Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.

Read More: Ozone News and Ozone Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.