University of Toronto professor turns hemp into auto parts

September 29, 2003

If Mohini Sain has his way, cars of the future may be fitted with tough, durable and completely biodegradable bumpers made of hemp.

Sain, a professor in the University of Toronto's Faculty of Forestry and Department of Chemical Engineering and Applied Chemistry, creates biocomposites from processed plant fibres. His latest research, published in the August issue of Materials Research Innovations and the July issue of Macromolecular Materials and Engineering, describes a way to create a material from hemp (a member of the cannabis family) that is both strong and lightweight. "We hope to develop this technology for automotive interior parts like instrument panels, structural applications for buildings and sports equipment and, ultimately, for medical devices such as cardiac devices and blood bags," says Sain.

In the studies, Sain treated stalks of hemp with chemicals to break down the "glue" that holds clumps of fibres together. The plant material was then combined with synthetic plastics. However, if it is mixed with plastics made from soy beans or pulp and paper sludge, researchers can create tough biocomposites that are completely biodegradable. Finally, using a combination of heat and pressure, they compressed the material into a variety of shapes. While these studies used hemp, the process also works with flax, wheat and corn.

Sain says these "green" materials could ultimately help Canada reduce its greenhouse gas emissions. "One of the greatest benefits of this technology is that we will not harm our environment by overproducing these natural fibres," says Sain. "It's a step towards reducing petrochemical-based material consumption and living in a bio-based economy."
-end-
CONTACT: Professor Mohini Sain, Faculty of Forestry/Department of Chemical Engineering and Applied Chemistry, 416-946-3191, m.sain@utoronto.ca or Janet Wong, U of T public affairs, 416-978-5949, jf.wong@utoronto.ca

University of Toronto

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.