A biomolecule as a light switch

September 29, 2005

Switchable fluorescent proteins - able to switch themselves reversibly back-and-forth between an "on" and "off" state - have been known for only a few years. However, they already hold promise for a large number of novel applications, from cellular biology to data storage. Cell biologists, X-Ray crystallographers, photobiophysicists, and computer-biophysicists from Goettingen have worked together on a project uncovering the molecular mechanism by which a fluorescent protein becomes switched (PNAS, September 13, 2005). This knowledge could be of importance for, among other purposes, optical data storage in protein crystals.

The fluorescent protein identified as asFP595 is found on the ends of the tentacles of the snakelocks anemone Anemonia sulcata, a type of coral which lives in the Mediterranean Sea and North Atlantic, in the areas near the surface of the water, which are flushed with light (see Fig. 1). In the tentacle ends, this protein probably protects the anemone's tissue from solar rays that are too strong. asFP595 absorbs green light and eventually emits red fluorescent light. When another light is applied to it, the protein can be switched back-and-forth between a fluorescent and non-fluorescent state. It is a so called "molecular light switch."

The researchers from Goettingen have uncovered the mechanism behind this molecular switch. They fabricated the protein in bacteria, and then, from the purified protein, cultivated crystals that still had the switching characteristics of the free protein. X-ray structural analysis and computer simulations showed that the chromophore - the part of the protein that absorbs the light - changes structure when it is lit up using a cis-trans isomerisation. The chromophore does what is called a "hula twist", changing its position merely 3x10-10 m - a third of a billionth of a meter. This tiny change is enough to turn the fluorescent protein into a non-fluorescent one.

Based on this knowledge, the researchers want to hone the protein with the goal of using it in various applications. They range from highest-resolution microscopy all the way to optical data storage in protein crystals.
-end-


Max-Planck-Gesellschaft

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.