Nav: Home

Stardust discovered in far-off planetary systems

September 29, 2011

The debris discs are remnants of the formation of the planets. "We are dealing with enormous accumulations of chunks of matter which create dust when they collide", Alexander Krivov says. This dust is of greatest importance for the astronomers, because it helps to draw conclusions about the planet formation. There are even two debris discs in our solar system, the asteroid belt and the Kuiper belt amongst whose bodies the dwarf planet Pluto belongs.

What makes the Jena discovery so special is the tremendous distance from our solar system to the stars with the debris discs. "These stars are hundreds of light years away from the Earth", according to Krivov. The particular focus is on TrES-2 in the Draco constellation and XO-5 in the Lynx constellation. Planets orbiting these stars can only be detected with the help of the transit method. It sounds like a simple principle: The night sky is photographed in regular intervals. Special software then checks the brightness of the stars on the images. If, in regular intervals, there are differences in brightness it is likely that a planet passes between the star and its observers.

The astronomers found evidence for the stardust with the help of photometric analysis. At first the characteristics of the stars can be analysed with it. If there are irregularities in the invisible infrared range, they point to the existence of stardust. Krivov says: "The dust is warmed up by the star and radiates heat. We see that radiation curve is above the radiation curve of the star as a clear sign of the existence of stardust."

Professor Krivov draws an impressive comparison for the search of debris discs in the vastness of the universe: it is as if you would detect an ice-cream cooled down to minus 130 degrees with a heat detector in a 5,000 kilometer distance from Jena.

-end-

Alexander Krivov's team of scientists concentrated its search for debris disc candidates on about 100 known extra-solar systems with transiting planets. Of these systems, they found 52 in the observational results of the US-American space telescope WISE published in April this year. The Jena scientists got lucky with two systems. As early as 1 June Alexander Krivov, Martin Reidemeister, Simone Fiedler, Dr. Torsten Löhne und Professor Ralph Neuhäuser submitted their paper to the science magazine 'Monthly Notices of the Royal Astronomical Society' for publication in the 'Letters' section. Meanwhile the paper has been published under the title 'Debris disc candidates in systems with transiting planets' (doi:10.1111/j.1745-3933.2011.01133.x).

Friedrich-Schiller-Universitaet Jena
From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.