New med-tech zinc sensor developed

September 29, 2017

A new zinc sensor has been developed by researchers, which will allow for a deeper understanding of the dynamic roles that metal ions play in regulating health and disease in the living body.

The research, published in the journal ACS Omega reports that the newly designed chemical sensor can detect and measure zinc levels in cells. It also has the functionality and portability to take continuous or repeated measurements within a single biological sample.

"This makes the sensor potentially suitable for use in future diagnostic tools that could open up entirely new windows into the body," says lead author of the research Dr Sabrina Heng, Research Fellow at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), at the University of Adelaide.

"Metal ions, including zinc, play crucial roles in cellular and life function--and a deficiency or change in the level of metal ions is often associated with disease," she says.

"Excess zinc in the body for example, is a possible sign of Alzheimer's or Parkinson's disease, or sometimes a serious bacterial infection."

The issue, says Dr Heng, is that current methods just give a snapshot at one particular point in time. Patient samples are generally tested for metal ion levels using specialised pathology equipment in laboratories. "In order to gain a deeper understanding of the dynamic roles that zinc and other metal ions play in regulating health and disease, it is important to develop new portable sensor technologies that can be used to probe metal ions within the body in real-time," she says.

Ideally she notes, the sensor needs to be able to be made to turn 'on' and 'off' using a switch of some kind.

"This means that multiple measurements can be made without the need to change the sensor. This also permits continual and non-invasive study."

What Dr Heng has done is to harness the power of light in the development of a new and innovative sensor, explains Professor Andrew Abell, CNBP Chief Investigator at the University of Adelaide and co-author on the research paper.

"The special characteristics of this zinc sensor sit at the chemical and molecular level," he says.

"One part of the sensor is a special chemical molecule, spiropyran, which sits on an advanced optical fibre--it's tailored to bind onto the zinc ion in the cells that are being examined."

"When the zinc is bound it fluoresces after it's been exposed to UV light from the fibre. The fluorescence intensity is dependent on the amount of zinc that is present."

"Treating this same sample with white light then un-binds the metal ion and reverts the sensor chemical back to its starting state, ready to be used again. This switching can be done many times without losing reliability or sensitivity."

"Adding such molecules to our sensing devices is important as it gives us the ability to control our sensing devices with the simple flip of a light switch," he says.

Dr Heng sees this research as a pivotal step in the development of future sensing tools that could be used by medical practitioners in their clinics.

"The next generation of healthcare will see increasing levels of smart med-tech available to doctors and specialists who will be able to undertake increased diagnoses on the spot."

"This new CNBP sensor could offer the ability for instant analysis of zinc levels within the body, without the need to wait for time consuming test results from specialist diagnostic laboratories," she says.

"This is a step towards an increasingly intelligent future. Real-time diagnosis means less time-delay in treatment for patients."
-end-
This research was funded by the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) with researchers located at the University of Adelaide, RMIT University and the University of South Australia.

IMAGES:
CNBP Research Fellow, Dr Sabrina Heng - http://flic.kr/p/YfrpWA
CNBP Research Fellow, Dr Sabrina Heng - http://flic.kr/p/XBFKD8
CNBP Chief Investigator Prof Andrew Abell - http://flic.kr/p/MRi9eS

RESEARCH PAPER: A Rationally Designed Probe for Reversible Sensing of Zinc and Application in Endothelial Cells.
URL: http://pubs.acs.org/doi/abs/10.1021/acsomega.7b00923

MEDIA CONTACTS:
Dr Sabrina Heng
CNBP, University of Adelaide
+61 8 8313 2364 (office) +61 8 8313 2390 (lab)
+61 435353109 (mobile)
sabrina.heng@adelaide.edu.au

Tony Crawshaw
Communications and PR
Centre for Nanoscale BioPhotonics (CNBP)
Macquarie University, Sydney
0402770403
tony.crawshaw@mq.edu.au

University of Adelaide

Related Zinc Articles from Brightsurf:

Scientists evaluated the perspectives of zinc intake for COVID-19 prevention
Researchers from Sechenov University in collaboration with colleagues from Germany, Greece and Russia reviewed scientific articles on the role of zinc in the prevention and treatment of viral infections and pneumonia, with projections on those caused by SARS-CoV-2.

Putting zinc on bread wheat leaves
Applying zinc to the leaves of bread wheat can increase wheat grain zinc concentrations and improve its nutritional content.

A nanoscale laser made of gold and zinc oxide
Tiny particles composed of metals and semiconductors could serve as light sources in components of future optical computers, as they are able to precisely localize and extremely amplify incident laser light.

Zinc lozenges did not shorten the duration of colds
Administration of zinc acetate lozenges to common cold patients did not shorten colds in a randomized trial published in BMJ Open.

Dietary zinc protects against Streptococcus pneumoniae infection
Researchers have uncovered a crucial link between dietary zinc intake and protection against Streptococcus pneumoniae, the primary bacterial cause of pneumonia.

Zinc could help as non-antibiotic treatment for UTIs
New details about the role of zinc in our immune system could help the development of new non-antibiotic treatment strategies for bacterial diseases, such as urinary tract infections (UTIs).

Zinc deficiency may play a role in high blood pressure
Lower-than-normal zinc levels may contribute to high blood pressure (hypertension) by altering the way the kidneys handle sodium.

Genetic polymorphisms and zinc status
Zinc is an essential component for all living organisms, representing the second most abundant trace element, after iron.

Autism is associated with zinc deficiency in early development -- now a study links the two
Autism has been associated with zinc deficiency in infancy. While it is not yet known whether zinc deficiency in early development causes autism, scientists have now found a mechanistic link.

Can chocolate, tea, coffee and zinc help make you more healthy?
Ageing and a low life expectancy are caused, at least partly, by oxidative stress.

Read More: Zinc News and Zinc Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.