Nav: Home

Helium found in coal seams could aid safe shale gas extraction

September 29, 2017

Natural deposits of helium gas - best known for its use in party balloons - could help aid the safe production of shale or coal gas, research suggests.

The discovery of high levels of helium in UK coal seams could help scientists to monitor the secure recovery of coal or shale gas from underground sites. Any gas leaks from deep underground would be accompanied by a rise in helium levels, which could be easily detected.

This could help address public concerns over perceived contamination risks associated with gas extraction.

Their discovery could aid secure fracking - in which rocks below ground are split with high-pressure fluids - or extraction of methane gas from deep coal beds.

Scientists say their findings could be used alongside a chemical test to monitor whether methane at gas extraction sites has escaped from deep shale.

In addition, scientists say their discovery may enable large volumes of helium gas to be recovered for sale. This valuable commodity is used in medical scanners and large-scale experiments such as the Large Hadron Collider at CERN.

Scientists at the University of Edinburgh and the Scottish Universities Environmental Research Centre sampled deep methane gas from an exploratory coal bed methane field in central Scotland and disused coal mines in central England. They found high levels of helium gas at each site.

They analysed the methane samples to identify tiny traces of inactive natural gases and different forms of carbon and hydrogen. These vary depending on the depth and origin of methane gas, enabling scientists to fingerprint and distinguish each source of methane.

If, following industrial exploration, methane or helium levels in groundwater at extraction sites are found to have changed, analysis could determine whether the gas is natural or a leak from deep shale.

Their research, published in Chemical Geology, was supported by the Natural Environment Research Council, the Scottish Government, the University of Edinburgh and SUERC.

Dr Stuart Gilfillan, of the University of Edinburgh's School of GeoSciences, who led the project, said: "Measuring the high helium levels in these deep sourced UK coal gases will enable shale gas exploration and extraction to be carried out responsibly, and help to address public concerns over this activity.

"Providing that helium levels in groundwaters are found to be low prior to exploration taking place, any presence of deep gas following shale gas activities will increase helium levels and allow robust detection of any contamination."
-end-


University of Edinburgh

Related Methane Articles:

Measuring methane from space
A group of researchers from Alaska and Germany is reporting for the first time on remote sensing methods that can observe thousands of lakes and thus allow more precise estimates of methane emissions.
New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.
Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Methane-consuming bacteria could be the future of fuel
Northwestern University researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion.
New measurement method for radioactive methane
The method developed by Juho Karhu in his PhD thesis work is a first step towards creating a precise measuring device.
New key players in the methane cycle
Methane is not only a powerful greenhouse gas, but also a source of energy.
More Methane News and Methane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.