Nav: Home

Plugging the ozone hole has indirectly helped Antarctic sea ice to increase

September 29, 2019

Observational records show that stratospheric ozone declined prior to the late 1990s, and an abrupt 50% reduction in the Antarctic stratospheric ozone layer occurred during September to November each year, the result of which is commonly known as the 'ozone hole'. Since then, stratospheric ozone started to stabilize, and has even slowly increased in the early part of the 21st century, especially in the polar regions.

Sea ice in the polar regions plays an important role in the global climate system. Change in sea ice results in a large variation in albedo over the sea surface, which leads to change in the absorption of solar radiation and the sea surface temperature. But how does the ozone layer, which is located in the stratosphere, influence Antarctic sea ice? This is a hot topic in the field of atmospheric science.

Recent studies demonstrate that the Antarctic ozone hole has important influences on Antarctic sea ice. For instance, ozone-induced changes in atmospheric and oceanic circulations significantly alter the transport of ocean heat and the dynamics of sea ice, consequently impacting upon sea surface temperatures and the Antarctic sea ice. Prof. Yongyun Hu and his team--a group of researchers from the Laboratory for Climate and Atmosphere-Ocean Studies, Department of Atmospheric and Oceanic Sciences, School of Physics at Peking University--have found that stratospheric ozone-induced indirect radiative effects also play important roles in causing changes in Antarctic sea ice, and their work has been accepted into the evolving special issue of Advances in Atmospheric Sciences on Antarctic Meteorology and Climate: Past, Present and Future.

By using a climate model, Prof. Yongyun Hu and his team designed a series of sensitivity experiments and found that ozone recovery leads to an increase in Antarctic sea ice.

"In this study, the atmospheric GCM was coupled only with a slab ocean to distinguish ozone-induced cloud radiative effects on sea ice, in which ocean heat transports and dynamic sea ice were excluded," says the corresponding author of the study, Prof. Hu. "Thus, the change in Antarctic sea ice is the product of radiation and heat processes. It is the indirect radiative effect of the stratospheric ozone change instead of its direct radiative effect that causes the changes in the sea surface temperature and sea ice. The indirect radiative effect comes from the change in clouds."

Their research demonstrates that the recovery of the Antarctic ozone hole absorbs more solar radiation and heats the lower stratosphere over the Southern Hemisphere high latitudes, which causes increases in the static stability in the upper troposphere and decreases in cloud cover over the Southern Hemisphere high latitudes. The reduced cloud cover leads to an increase in outgoing longwave radiation and a reduction in downward infrared radiation, especially in austral autumn. This results in cooling of the Southern Ocean surface and increasing Antarctic sea ice. Surface cooling also involves ice-albedo feedback. Increasing sea ice reflects solar radiation and causes further cooling and more increases in Antarctic sea ice.
The special issue on Antarctic Meteorology and Climate: Past, Present and Future, scheduled to be officially released in the spring of 2020 at Springer website of Advances in Atmospheric Sciences, will highlight recent research progress, including the ongoing effort of the Year of Polar Prediction (YOPP), in 1) Antarctic meteorology and numerical weather prediction and 2) climate variability and change in the Antarctic.

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Sea Ice Articles:

Low sea-ice cover in the Arctic
The sea-ice extent in the Arctic is nearing its annual minimum at the end of the melt season in September.
Arctic sea ice 2019 wintertime extent is seventh lowest
Sea ice in the Arctic appears to have hit its annual maximum extent after growing through the fall and winter.
Study shows algae thrive under Greenland sea ice
Microscopic marine plants flourish beneath the ice that covers the Greenland Sea, according to a new study in the Journal of Geophysical Research: Oceans.
ICESat-2 reveals profile of ice sheets, sea ice, forests
With each pass of the ICESat-2 satellite, the mission is adding to datasets tracking Earth's rapidly changing ice.
Arctic cyclone limits the time-scale of precise sea-ice prediction in Northern Sea Route?
Climate change has accelerated sea-ice retreat in the Arctic Ocean, leading to new opportunities for summer commercial maritime navigation along the Northern Sea Route.
Ocean waves following sea ice loss trigger Antarctic ice shelf collapse
Storm-driven ocean swells have triggered the catastrophic disintegration of Antarctic ice shelves in recent decades, according to new research published in Nature today.
New technique more accurately reflects ponds on Arctic sea ice
This one simple mathematical trick can accurately predict the shape and melting effects of ponds on Arctic sea ice, according to new research by UChicago scientists.
Arctic wintertime sea ice extent is among lowest on record
Sea ice in the Arctic grew to its annual maximum extent last week, and joined 2015, 2016 and 2017 as the four lowest maximum extents on record, according to scientists at the NASA-supported National Snow and Ice Data Center (NSIDC) and NASA.
Sea ice algae blooms in the dark
Researchers from Aarhus University have measured a new world record: Small ice algae on the underside of the Arctic sea ice live and grow at a light level corresponding to only 0.02 percent of the light at the surface of the ice.
Weather anomalies accelerate the melting of sea ice
ETH researchers reveal why Arctic sea ice began to melt in the middle of winter two years ago -- and that the increased melting of ice in summer is linked to recurring periods of fair weather.
More Sea Ice News and Sea Ice Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at