Plugging the ozone hole has indirectly helped Antarctic sea ice to increase

September 29, 2019

Observational records show that stratospheric ozone declined prior to the late 1990s, and an abrupt 50% reduction in the Antarctic stratospheric ozone layer occurred during September to November each year, the result of which is commonly known as the 'ozone hole'. Since then, stratospheric ozone started to stabilize, and has even slowly increased in the early part of the 21st century, especially in the polar regions.

Sea ice in the polar regions plays an important role in the global climate system. Change in sea ice results in a large variation in albedo over the sea surface, which leads to change in the absorption of solar radiation and the sea surface temperature. But how does the ozone layer, which is located in the stratosphere, influence Antarctic sea ice? This is a hot topic in the field of atmospheric science.

Recent studies demonstrate that the Antarctic ozone hole has important influences on Antarctic sea ice. For instance, ozone-induced changes in atmospheric and oceanic circulations significantly alter the transport of ocean heat and the dynamics of sea ice, consequently impacting upon sea surface temperatures and the Antarctic sea ice. Prof. Yongyun Hu and his team--a group of researchers from the Laboratory for Climate and Atmosphere-Ocean Studies, Department of Atmospheric and Oceanic Sciences, School of Physics at Peking University--have found that stratospheric ozone-induced indirect radiative effects also play important roles in causing changes in Antarctic sea ice, and their work has been accepted into the evolving special issue of Advances in Atmospheric Sciences on Antarctic Meteorology and Climate: Past, Present and Future.

By using a climate model, Prof. Yongyun Hu and his team designed a series of sensitivity experiments and found that ozone recovery leads to an increase in Antarctic sea ice.

"In this study, the atmospheric GCM was coupled only with a slab ocean to distinguish ozone-induced cloud radiative effects on sea ice, in which ocean heat transports and dynamic sea ice were excluded," says the corresponding author of the study, Prof. Hu. "Thus, the change in Antarctic sea ice is the product of radiation and heat processes. It is the indirect radiative effect of the stratospheric ozone change instead of its direct radiative effect that causes the changes in the sea surface temperature and sea ice. The indirect radiative effect comes from the change in clouds."

Their research demonstrates that the recovery of the Antarctic ozone hole absorbs more solar radiation and heats the lower stratosphere over the Southern Hemisphere high latitudes, which causes increases in the static stability in the upper troposphere and decreases in cloud cover over the Southern Hemisphere high latitudes. The reduced cloud cover leads to an increase in outgoing longwave radiation and a reduction in downward infrared radiation, especially in austral autumn. This results in cooling of the Southern Ocean surface and increasing Antarctic sea ice. Surface cooling also involves ice-albedo feedback. Increasing sea ice reflects solar radiation and causes further cooling and more increases in Antarctic sea ice.
The special issue on Antarctic Meteorology and Climate: Past, Present and Future, scheduled to be officially released in the spring of 2020 at Springer website of Advances in Atmospheric Sciences, will highlight recent research progress, including the ongoing effort of the Year of Polar Prediction (YOPP), in 1) Antarctic meteorology and numerical weather prediction and 2) climate variability and change in the Antarctic.

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Sea Ice Articles from Brightsurf:

2020 Arctic sea ice minimum at second lowest on record
NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.

Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.

Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.

Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.

Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.

Read More: Sea Ice News and Sea Ice Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to