Mussels connect antibodies to treat cancer

September 29, 2020

Antibody-based immunotherapy is one of treatment options for cancer immunotherapy by modulating our immune system with therapeutic antibodies. Among many strategies for cancer therapy, it has been considered as an advanced cancer treatment due to its favorable clinical benefits by effectively activating our immune cells to attack cancer cells in the body. The development of new cancer immunotherapy drugs has gained great attention as the next-generation research area with more than 1,600 clinical trials currently underway worldwide.

However, conventional cancer treatments that require intravenous administration throughout the whole body can cause side effects on normal cells or tissues by continuously supplying large amounts of antibodies. In particular, if large amounts of antibodies are released at once, there is a risk of excessive immune response that can lead to autoimmune diseases. The common localized treatment, such as local injection to tumor, still had a problem of rapidly spreading antibodies out of the target area by blood flow, leaving only a few, resulting in a significant reduction in treatment efficacy.

The POSTECH research team led by professors Hyung Joon Cha, Kye Il Joo, and Dr. Yeonsu Jung of the Department of Chemical Engineering along with Professor Sin-Hyeog Im and Dr. Sung-Min Hwang of the Department of Life Sciences have together developed a novel immunotherapy platform called imuGlue. This new platform can effectively connect mussel adhesive proteins (MPAs) - which has strong adhesion in even underwater conditions - to the antibodies used as immune checkpoint inhibitors (ICIs) in order to deliver the antibodies to the target areas.

ImuGlue can significantly enhance the efficiency of cancer immunotherapy and reduce the side effects by allowing therapeutic antibodies to stay in the target area for long periods of time even in moisture-rich environment and release antibodies on-demand at cancer sites. It was also demonstrated that imuGlue could be utilized for combination therapy with other immunomodulatory drugs often used in cancer immunotherapy.

This new treatment platform for localized cancer immunotherapy has the advantage of not only being able to easily connect various therapeutic antibodies, but also does not mix or lose its property in body fluid- or blood-rich environments and at mucous surfaces. For this reason, it is anticipated to lead in the cancer immunotherapy market as it can be used not just through injections but also by spraying or other unique treatment methods.

"This study is the first immunotherapy that uses the mussel adhesion protein," commented Professor Hyung Joon Cha who led the study. He added, "As an innovative antibody delivery platform, it should be useful in various forms of immunotherapy."
The study was published in Biomaterials, an authoritative journal in biomaterial field, and was conducted with the support from the National Research Foundation of Korea funded by the Ministry of Science and ICT, Korea, the Basic Science Research Program funded by the Ministry of Education, Korea, and the Marine Biotechnology Program funded by the Ministry of Oceans and Fisheries, Korea.

Pohang University of Science & Technology (POSTECH)

Related Antibodies Articles from Brightsurf:

Scientist develops new way to test for COVID-19 antibodies
New research details how a cell-free test rapidly detects COVID-19 neutralizing antibodies and could aid in vaccine testing and drug discovery efforts.

Mussels connect antibodies to treat cancer
POSTECH research team develops innovative local anticancer immunotherapy technology using mussel protein.

For an effective COVID vaccine, look beyond antibodies to T-cells
Most vaccine developers are aiming solely for a robust antibody response against the SARS-CoV-2 virus, despite evidence that antibodies are not the body's primary protective response to infection by coronaviruses, says Marc Hellerstein of UC Berkeley.

Children can have COVID-19 antibodies and virus in their system simultaneously
With many questions remaining around how children spread COVID-19, Children's National Hospital researchers set out to improve the understanding of how long it takes pediatric patients with the virus to clear it from their systems, and at what point they start to make antibodies that work against the coronavirus.

The behavior of therapeutic antibodies in immunotherapy
Since the late 1990s, immunotherapy has been the frontline treatment against lymphomas where synthetic antibodies are used to stop the proliferation of cancerous white blood cells.

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Seroprevalence of antibodies to SARS-CoV-2 in 10 US sites
This study estimates how common SARS-CoV-2 antibodies are in convenience samples from 10 geographic sites in the United States.

Neutralizing antibodies in the battle against COVID-19
An important line of defense against SARS-CoV-2 is the formation of neutralizing antibodies.

Three new studies identify neutralizing antibodies against SARS-CoV-2
A trio of papers describes several newly discovered human antibodies that target the SARS-CoV-2 virus, isolated from survivors of SARS-CoV-2 and SARS-CoV infection.

More effective human antibodies possible with chicken cells
Antibodies for potential use as medicines can be made rapidly in chicken cells grown in laboratories.

Read More: Antibodies News and Antibodies Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to