Facile synthesis of quinoline in water

September 29, 2020

Organic synthesis in water has attracted the attention of chemists for several years. Water is considered as nature's universal solvent and possesses distinguished physical and chemical properties. It exhibits powerful hydrogen bonding and a wide temperature range to stay in liquid state. In recent years, many organic transformations use water as the solvent system. Other interesting features of water are that the pH of water is often varied, salting-in or salting-out effects can be induced by adding additives such as salts or surfactants, cyclodextrins etc. But water was neglected as a reaction solvent by organic chemists due the concept that all the reactants must be soluble in the reaction media. The earliest known reactions of organic synthesis in water include Wohler's urea synthesis and, Baeyer and Drewsen's indigo synthesis. The situation remained the same until Breslow showed how water can enhance the reaction rate of the Diels-Alder reaction. Water has become an admired reaction medium after the contribution of the Sharpless and Breslow groups. According to Jung and Marcus, approximately 25% of water molecules possess free hydroxyl groups at the interface and may form potential H-bonding with the substrates.

The use of water as the solvent system has advantages like ease of product isolation, high heat capacity and unique redox stability. In the last few years, quinoline and its derivatives have attracted both synthetic and biological chemists because of its diverse chemical and pharmacological properties. They exhibit significant activity against several viruses including antimalarial, antibiotic, anticancer, anti-inflammatory, antihypertensive, tyro kinase PDGF-RTK inhibition and anti-HIV properties. Moreover, the quinoline ring system occurs in various natural products, usually in alkaloids, and is often used for the design of many synthetic compounds with diverse pharmacological properties. There are a number of natural products of quinoline skeleton used as a medicine or employed as lead molecule for the development newer and potent molecules. For instance, quinine was isolated as the active ingredient from the bark of Cinchona trees and has been used for the treatment of malaria. Its structure determination and SAR studies resulted in discovery of newer antimalarial drugs like chloroquine, primaquine, mefloquine etc.

The quinoline structural motif is readily available through a number of classical synthetic routes and from commercially available reagents. The Friedländer synthetic method, Skraup, Combes and Doebner-Miller syntheses are good examples. Moreover, the Conrad-Limpach, Gould-Jacobs and Camps routes for the synthesis of quinolones are widely used methods. All classical methods have similar disadvantages, requiring highly acidic and/or oxidizing media, high temperatures and long reaction times. Moreover, most of these synthetic routes have selectivity problems with meta-substituted substrates and its versatility is limited by the reactivity of the methylene carbon involved in the aldol reaction. Although efficient and versatile, classical routes towards the synthesis of quinolines present environmental concerns as most synthetic routes use a large excess of reagents and produce a significant amount of toxic waste.

Over the last decades, scientists are putting constant efforts to develop environmentally friendly synthetic methodology for quinoline derivatives. A significant amount of efforts has been put forwarded to synthesize quinoline moieties by following greener protocols. Microwave irradiation and activation of bonds by light exposure are also documented by several groups in addition to catalyst-free reaction. In this article, we report water-mediated organic reactions resulting in the synthesis and functionalization of quinoline moieties. Some of these transformations are highly regioselective. The synthesis of qionoline in water is covered in detail in a review, Facile Synthesis of Quinolines in Water, authored by Banik et al., in Current Organic Chemistry.
To view the article, please visit: https://www.eurekaselect.com/node/186002/article/facile-synthesis-of-quinolines-in-water

Author Information:

Gongutri Borah1, Preetismita Borah2, Arnav Bhuyan1 and Bimal K. Banik*3

1Chemical Science and Technology División, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India, 785006;

2 Agrionics, v1(a), CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh, India, 160030;

3Research Development & College of Natural Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia; Email: bimalbanik10@gmail.com

Bentham Science Publishers

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.