In a field where smaller is better, researchers discover the world's tiniest antibodies

September 29, 2020

Researchers at the University of Bath in the UK and biopharma company UCB have found a way to produce miniaturised antibodies, opening the way for a potential new class of treatments for diseases.

Until now, the smallest manmade antibodies (known as monoclonal antibodies, or mAbs) were derived from llamas, alpacas and sharks, but the breakthrough molecules isolated from the immune cells of cows are up to five times smaller. This is thanks to an unusual feature of a bovine antibody known as a knob domain.

The potential medical implications of the new antibodies' diminutive size are huge. For instance, they may bind to sites on pathogens that regular antibody molecules are too large to latch on to, triggering the destruction of invasive microbes. They may also be able to gain access to sites of the body which larger antibodies can't.

Antibodies consist of chains of amino acids (the building blocks of proteins) that join together in a loopy structure. The loops in the chains, known as complementarity determining regions, bind to antigen targets, thereby activating the immune system. Bovine antibodies are loopier than most, and around 10% include a knob domain - a characteristic that is unique among jawed vertebrates. These tightly packed bundles of mini-loops are presented on a protein stalk, far from other loops, and are thought to play a critical role in binding.

The reason knob domains are creating a stir is simple: isolated from the rest of the antibody, these loop extensions can function autonomously, effectively making tiny antibodies that can bind tightly to their targets.

Professor Jean van den Elsen from Bath's Department of Biology and Biochemistry, who was involved in the research, said this finding was surprising. "These knobs are able to bind their target as complete antibodies, so in effect we have been able to miniaturise antibodies for the first time."

These new molecules have been developed as part of a collaborative project between the University of Bath and global biopharma company UCB. They originate from cows that have been immunised by injection with an antigen (particles of a foreign body), eliciting an immune response. Natural antibodies are mined from the cow, through a process of sorting and 'deep sequencing' of antibody producing B-cells. The resulting antibodies are then manufactured in the lab in cultures of human cells.

Regular antibodies are made by the human body as part of its natural response to an infection, whereas monoclonal antibodies are administered to a patient when an infection has taken hold and they are struggling to beat it unaided. Over the past few decades, mAbs have emerged as effective treatments for various medical conditions, including cancers, autoimmune disorders and serious viral infections. It is hoped that miniaturised mAbs will eventually be involved in a range of drug therapies.

The antigen used by the Bath researchers to elicit an immune response in cows is called Complement component C5, and C5 plays a role in many human diseases (including COVID-19), where there is an inflammatory response.

Not only do these novel monoclonal antibodies have a size advantage over regular mAbs but they are also more robust, meaning they remain stable for longer.

"They have very sturdy, tightly packed structures," said Professor van den Elsen. "So not only do they get to places better than other antibodies but they may also have a far longer shelf life."

Alex Macpherson, a PhD student at Bath and a biochemist at UCB, who is lead author on the paper, added: "Antibody drug discovery is an established field but this research opens up entirely new opportunities. There is huge potential use for these miniaturised antibodies."

Alastair Lawson, immunology Fellow at UCB and UCB lead on the project said: "This research has led to the discovery of the smallest clinically relevant antibody fragments ever reported and we are very excited about their potential."
-end-
The paper Isolation of antigen-specific, disulphide-rich knob domain peptides from bovine antibodies is published in PLOS Biology

NOTES

To arrange interviews with the authors, or for a copy of the research paper, please contact Vittoria D'Alessio in the University of Bath press office via vda26@bath.ac.uk or call 01225-386319.

University of Bath

The University of Bath is one of the UK's leading universities both in terms of research and our reputation for excellence in teaching, learning and graduate prospects.

The University is rated Gold in the Teaching Excellence Framework (TEF), the Government's assessment of teaching quality in universities, meaning its teaching is of the highest quality in the UK.

In the Research Excellence Framework (REF) 2014 research assessment 87 per cent of our research was defined as 'world-leading' or 'internationally excellent'. From developing fuel efficient cars of the future, to identifying infectious diseases more quickly, or working to improve the lives of female farmers in West Africa, research from Bath is making a difference around the world. Find out more: http://www.bath.ac.uk/research/

Well established as a nurturing environment for enterprising minds, Bath is a top ten university in all national league tables. We are ranked 6th in the UK by The Guardian University Guide 2021, 9th in The Times & Sunday Times Good University Guide 2021, and 9th out of 131 UK universities in the Complete University Guide 2021.

About UCB

UCB, Brussels, Belgium is a global biopharmaceutical company focused on the discovery and development of innovative medicines and solutions to transform the lives of people living with severe diseases of the immune system or of the central nervous system. With more than 7,600 people in approximately 40 countries, the company generated revenue of € 4.9 billion in 2019. UCB is listed on Euronext Brussels (symbol: UCB). Follow us on Twitter: @UCB_news.

University of Bath

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.