Understanding the effect of aging on the genome

September 29, 2020

Time may be our worst enemy, and aging its most powerful weapon. Our hair turns grey, our strength wanes, and a slew of age-related diseases represent what is happening at the cellular and molecular levels. Aging affects all the cells in our body's different tissues, and understanding its impact would be of great value in fighting this eternal enemy of all ephemeral life forms.

The key is to first observe and measure. In a paper published in Cell Reports, scientists led by Johan Auwerx at EPFL started by asking a simple question: how do the tissues of aging mice differ from those of mice that are mere adults?

To answer the question, the researchers used the multiple techniques to measure the expression of everyone one of the thousands of mouse's genes, and to identify any underlying epigenetic differences. The researchers not only measured different layers of information, but they did it across three different tissues: liver, heart, and muscle.

The data collectively allowed them to define an aging "footprint" that can serve as a field for investigation. But while many of the known aging manifestations were recovered, different tissues behaved differently.

"We will never have a thorough understanding of aging by studying a single tissue, and this applies to many other processes and diseases," says lead author Maroun Bou Sleiman. "Data, whether freshly produced or reused, is the key to understanding complex systems, and we are just scratching the surface."

Through multiple bioinformatics analyses, the scientists identified certain genes and proteins that may be controlling the complex aging process. By including human population data, they also showed that many of the "players" they identified in the mouse genome may be also relevant in human aging.

Finally, the researchers used human genetic data to show that some of the "players" may also explain why some humans live longer than others. "Our final goal is not to stop ageing, but to age better and disease-free, and to do that, we will need to characterize this system," says Johan Auwerx. "This is a perfect example of cross-species integration starting from the laboratory mouse and ending in human population data that takes us one step closer to understanding one of the most complex processes in biology."
Professor Johan Auwerx's lab is part of EPFL's Institute of Bioengineering, situated in the School of Life Sciences.


Maroun Bou Sleiman, Pooja Jha, Riekelt Houtkooper, Robert W. Williams, Xu Wang, Johan Auwerx. The Gene Regulatory Footprint of Aging Highlights Conserved Central Regulators. Cell Reports 29 September 2020. DOI: DOI: 10.1016/j.celrep.2020.108203

Ecole Polytechnique Fédérale de Lausanne

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.