Lessons from a cooling climate

September 29, 2020

Usually, talk of carbon sequestration focuses on plants: forests storing carbon in the trunks of massive trees, algae blooming and sinking to the seabed, or perhaps peatlands locking carbon away for tens of thousands of years.

While it's true that plants take up large amounts of carbon from the atmosphere, the rocks themselves mediate a great deal of the carbon cycle over geological timescales. Processes like volcano eruptions, mountain building and erosion are responsible for moving carbon through Earth's atmosphere, surface and mantle.

In March 2019, a team led by UC Santa Barbara's Francis Macdonald published a study proposing that tectonic activity in the tropics, and subsequent chemical weathering by the abundant rainfall, could account for the majority of carbon capture over million-year timeframes.

Now, Macdonald, doctoral student Eliel Anttila and their collaborators have applied their new model to the emergence of the Southeast Asian archipelago -- comprising New Guinea, Indonesia, Malaysia, the Philippines and other nearby islands -- over the past 15 million years. Using data from the paleo-record, they determined that the islands are a modern hotspot of carbon dioxide consumption. Their results, published in the Proceedings of the National Academy of Sciences, deepen our understanding of past climatic transitions and shed light on our current climate crisis.

The primary means by which carbon is recycled into the planet's interior is through the breakdown of silicate rocks, especially rocks high in calcium and magnesium. Raindrops absorb carbon dioxide from the atmosphere and bring it to the surface. As the droplets patter against the stone, the dissolved carbon dioxide reacts with the rocks, releasing the calcium and magnesium into rivers and the ocean. These ions then react with dissolved carbon in the ocean and form carbonate compounds like calcite, which consolidates on the sea floor, trapping the atmospheric carbon for tens of millions of years or longer.

Given the right conditions, and enough time, the deep carbon cycle can lock away enough carbon to plunge Earth into an ice age. "Last year we found that there was a nice correlation between when we make a bunch of mountains in the tropical rain belt and when we have cooling events," said Macdonald, a professor in the Department of Earth Science.

Carbon dioxide levels in the atmosphere spiked in the mid-Miocene climatic maximum, around 15 million years ago. Although there is still some uncertainty, scientists believe that atmospheric CO2 levels were between 500 and 750 parts per million (ppm), compared to pre-industrial levels of around 280 ppm. During the mid-Miocene, warmer conditions stretched across the globe, the Antarctic ice was meager, and the Arctic was completely ice free.

Today we are around 411 ppm, and climbing, Macdonald pointed out.

Around that time, the Eurasian and Australian plates began colliding and creating the Southeast Asian archipelago and few of the present islands were emergent above sea-level. "This is the most recent example of an arc-continent collision in the tropics," Macdonald noted, "and throughout this period we actually have proxy data for the change in CO2 levels and temperatures."

The team was curious how large an effect the emergence of the islands may have had on the climate. Based on their previous hypothesis, the formation of these largely volcanic rock provinces in the tropics should be a major factor in determining CO2 levels in the atmosphere.

They applied geological data of ancient shorelines and lithology to a joint weathering and climate model, which accounted for four major variables: latitude, topography, total area and rock type. In the tropics, a more mountainous region will experience more rain, and have a greater surface area for weathering to occur. Once the surface rocks are weathered, the combination of erosion and uplift exposes fresh rock.

"What you need to do is just keep removing that soil, keep getting fresh rock there, and keep dissolving it," explained Macdonald. "So having active tectonic topography is key. All of Southeast Asia has active topography, and this is a big reason why it's just so much more effective at breaking rocks down into their constituent ions so they can join into the geochemical cycles."

The team's analysis bore this out. They found that weathering, uplift, and erosion just in the Southeast Asian islands could have accounted for most of the drop in CO2 levels between the mid-Miocene climate maximum and the Pleistocene ice ages, when carbon dioxide was around 200 ppm.

These findings could provide insights on our current climate crisis. "The reason scientists are so interested in understanding the Miocene is because we think of this as perhaps the best natural analogue to what the world may look like at a CO2 level over 500 ppm," said Macdonald. "It was the most recent time where we had significantly less ice on Earth, and we had CO2 levels that are in the range of where we're going in our current anthropogenic experiment."

"People should be worried not necessarily about the amplitude of the increase, but the slope," added Anttila. "That's that real problem right now." Humans have moved a comparable amount of carbon into the atmosphere in just a few generations as it took the Earth to pull out of the atmosphere over millions of years.

"You realize that we are more effective than any geological processes at geoengineering," Macdonald said.

The team is currently developing a model and looking at the rocks themselves to reevaluate previous hypotheses for the initial cooling. By a stroke of good fortune, the original specimens used to develop these hypotheses are from the Monterey Formation, a layer of rock that crops up throughout the Santa Barbara basin. These rocks dominate cliff faces from Santa Barbara to Goleta Pier and from Coal Oil Point to Gaviota.

"We've got this amazing opportunity right here to reconstruct this time period, right in our backyard," said Macdonald.

"These records of going from a warmer climate in the Miocene to the cooler climate of today are recorded right here in the cliffs," he added. "So further tests of the hypotheses -- especially in quarantine times, when we can't travel -- may just involve going out to the beach."

University of California - Santa Barbara

Related Ice Age Articles from Brightsurf:

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Ice Age manatees may have called Texas home
Manatees don't live year-round in Texas, but these gentle sea cows are known to occasionally visit, swimming in for a 'summer vacation' and returning to warmer waters for the winter.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How cold was the ice age? Researchers now know
A University of Arizona-led team has nailed down the temperature of the last ice age -- the Last Glacial Maximum of 20,000 years ago - to about 46 degrees Fahrenheit.

What causes an ice age to end?
Research by an international team helps to resolve some of the mystery of why ice ages end by establishing when they end.

New study results consistent with dog domestication during ice age
Analysis of Paleolithic-era teeth from a 28,500-year-old fossil site in the Czech Republic provides supporting evidence for two groups of canids -- one dog-like and the other wolf-like - with differing diets, which is consistent with the early domestication of dogs.

Did an extraterrestrial impact trigger the extinction of ice-age animals?
Based on research at White Pond near Elgin, South Carolina, University of South Carolina archaeologist Christopher Moore and 16 colleagues present new evidence of a controversial theory that suggests an extraterrestrial body crashing to Earth almost 13,000 years ago caused the extinction of many large animals and a probable population decline in early humans.

Dust in ice cores leads to new knowledge on the advancement of the ice before the ice age
Working with the ice core ReCap, drilled close to the coast in East Greenland, postdoc Marius Simonsen wondered why the dust particles from the interglacial period -- the warmer period of time between the ice ages -- were several times bigger than the dust particles from the ice age.

Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.

What triggered the 100,000-year Ice Age cycle?
A slowing of ocean circulation in the waters surrounding Antarctica drastically altered the strength and more than doubled the length of global ice ages following the mid-Pleistocene transition, a new study finds.

Read More: Ice Age News and Ice Age Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.