Scientists found a connection between amino acid metabolism and joint hypermobility in autistic children

September 29, 2020

A team of researchers found out that children with autistic spectrum disorder (ASD) have increased levels of the amino acid hydroxyproline. According to the medics, this may be associated with joint hypermobility, a common symptom in ASD patients. This information can help improve anti-ASD therapy. The work was published in the Research in Autism Spectrum Disorders journal.

Amino acids are the building blocks of proteins, and proteins are what our muscles, internal organs, and also enzymes and hormones are made of. They control our daily functioning and secure healthy growth and development of our bodies. Both lack and excess of amino acids can cause health issues. One of the factors that can have a negative impact on the balance of amino acids is autistic spectrum disorder or ASD. It manifests itself in a patient's early childhood and remains with them for the rest of their life. It is still unknown how exactly ASD affects a patient's amino acid profile and what effects it has on their body. However, a team of researchers found out that children with ASD have increased levels of the amino acid hydroxyproline. This may be associated with joint hypermobility, a common symptom in ASD patients.

"The available data about the amino acid profile of ASD patients is quite contradictory which may be due to age and gender differences, specifics of clinical treatment, and other parameters. Information about the levels of several amino acids at a given time can help better understand the specifics of metabolism in ASD patients. That is why in our work we focused on studying the levels of amino acids in children's blood serum," said Alexey Tinkov, a Candidate of Medical Sciences, and a lecturer at the Department of Elementology at RUDN University and Yaroslavl State University.

The participants of the study were 97 boys from 3 to 14 years of age, of which 64 were diagnosed with ASD. The levels of amino acids in their blood serum were measured using high-efficiency liquid chromatography with UV detection. This method allowed the researchers to break the samples down to their components and measure their concentrations.

Four amino acids (leucine, serine, tyrosine, and hydroxyproline) turned out to be associated with ASD. Hydroxyproline is a component of collagen, the basis of all connective tissues: tendons, bones, and cartilages. Therefore, the team assumed that increased hydroxyproline levels might be the cause of joint hypermobility. By various estimates, this disorder is found in 15% to 50% of young ASD patients. The level of hydroxyproline in the blood of healthy children amounted to 0.87 mg per liter, while in ASD patients it reached 1.7 mg/l. The team also found out that the levels of arginine, glutamine, histidine, leucine, lysine, phenylalanine, serine, taurine, tryptophan, and threonine in the blood of children with ASD were 15% to 28% lower than in healthy ones. Among other things, these amino acids regulate the growth and reconstruction of body tissues. According to the researchers, their deficiency can negatively affect a child's psychomotor development.

"We assumed that increased hydroxyproline levels might be associated with joint hypermobility, and the deficiency of other amino acids might affect the neuronal dysfunction. Further studies may identify potential targets for proactive treatment. Theoretically, the normalization of amino acid balance can become an additional tool for ASD therapy," added Prof. Anatoly Skalny, MD, the head of the Department of Medical Elementology at RUDN University.
-end-
The study was financially supported by the Russian Foundation for Basic Research under scientific project No. 18-315-00103.

RUDN University

Related Amino Acids Articles from Brightsurf:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.

Microwaves are useful to combine amino acids with hetero-steroids
Aza-steroids are important class of compounds because of their numerous biological activities.

New study finds two amino acids are the Marie Kondo of molecular liquid phase separation
a team of biologists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) have identified unique roles for the amino acids arginine and lysine in contributing to molecule liquid phase properties and their regulation.

Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.

A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.

New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.

Read More: Amino Acids News and Amino Acids Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.