Smart cruise control steers drivers toward better decisions

September 29, 2020

Vehicle manufacturers offer smart features such as lane and braking assist to aid drivers in hazardous situations when human reflexes may not be fast enough. But most options only provide immediate benefits to a single vehicle.

What if, like a murmuration of starlings, our cars and trucks moved cooperatively on the road in response to each vehicle's environmental sensors, reacting as a group to lessen traffic jams and protect the humans inside?

This question forms the basis of Kuilin Zhang's National Science Foundation CAREER Award research. Zhang, an associate professor of civil and environmental engineering at Michigan Technological University, has published "A distributionally robust stochastic optimization-based model predictive control with distributionally robust chance constraints for cooperative adaptive cruise control under uncertain traffic conditions" in the journal Transportation Research Part B: Methodological.

The paper is coauthored with Shuaidong Zhao, now a senior quantitative analyst at National Grid, where he continues to conduct research on the interdependency between smart grid and electric vehicle transportation systems.

Creating vehicle systems adept at avoiding traffic accidents is an exercise in proving Newton's First Law: An object in motion remains so unless acted on by an external force. Without much warning of what's ahead, car accidents are more likely because drivers don't have enough time to react. So what stops the car? A collision with another car or obstacle -- causing injuries, damage and in the worst case, fatalities.

But cars communicating vehicle-to-vehicle can calculate possible obstacles in the road at increasing distances -- and their synchronous reactions can prevent traffic jams and car accidents.

"On the freeway, one bad decision propagates other bad decisions," Zhang said. "If we can consider what's happening 300 meters in front of us, it can really improve road safety. It reduces congestion and accidents."

Zhang's research asks how vehicles connect to other vehicles, how those vehicles make decisions together based on data from the driving environment and how to integrate disparate observations into a network.

Zhang and Zhao created a data-driven, optimization-based control model for a "platoon" of automated vehicles driving cooperatively under uncertain traffic conditions. Their model, based on the concept of forecasting the forecasts of others, uses streaming data from the modeled vehicles to predict the driving states (accelerating, decelerating or stopped) of preceding platoon vehicles. The predictions are integrated into real-time, machine-learning controllers that provide onboard sensed data. For these automated vehicles, data from controllers across the platoon become resources for cooperative decision-making.

The model indicates controllers could help vehicles maintain constant time gaps between themselves to reduce congestion and traffic accidents and could also conserve energy by reducing the need to accelerate and decelerate.

The next phase of Zhang's CAREER Award-supported research is to test the model's simulations using actual connected, autonomous vehicles. Among the locations well-suited to this kind of testing is Michigan Tech's Keweenaw Research Center, a proving ground for autonomous vehicles, with expertise in unpredictable environments.

Ground truthing the model will enable data-driven, predictive controllers to consider all kinds of hazards vehicles might encounter while driving and create a safer, more certain future for everyone sharing the road.
-end-


Michigan Technological University

Related Driving Articles from Brightsurf:

Driving behavior less 'robotic' thanks to new Delft model
Researchers from TU Delft have now developed a new model that describes driving behaviour on the basis of one underlying 'human' principle: managing the risk below a threshold level.

Warming temperatures are driving arctic greening
As Arctic summers warm, Earth's northern landscapes are changing. Using satellite images to track global tundra ecosystems over decades, a new study found the region has become greener, as warmer air and soil temperatures lead to increased plant growth.

Software of autonomous driving systems
Researchers at TU Graz and AVL focus on software systems of autonomous driving systems.

Driving immunometabolism to control lung infection
When drugs to kill microbes are ineffective, host-directed therapy uses the body's own immune system to deal with the infection.

Representation of driving behavior as a statistical model
A joint research team from Toyohashi University of Technology has established a method to represent driving behaviors and their changes that differ among drivers in a single statistical model, taking into account the effect of various external factors such as road structure.

Improving the vision of self-driving vehicles
There may be a better way for autonomous vehicles to learn how to drive themselves: by watching humans.

Impaired driving -- even once the high wears off
McLean researchers have discovered that recreational marijuana use affects driving ability even when users are not intoxicated.

Self-driving microrobots
Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms.

AI to determine when to intervene with your driving
Can your AI agent judge when to talk to you while you are driving?

Cooperating may result in better self-driving experience
To better understand and predict the outcomes of the steering wheel control dilemma, contrary to many previous studies, in a paper published in IEEE/CAA Journal of Automatica Sinica, Dr.

Read More: Driving News and Driving Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.