Coming soon to a circuit near you

September 29, 2020

We know that DNA molecules express heredity through genetic information. However, in the past few years, scientists have discovered that DNA can conduct electrical currents. This makes it an interesting candidate for roles that nature did not intend for this molecule, such as smaller, faster and cheaper electric circuits in electronic devices, and to detect the early stages of diseases like cancer and COVID-19.

In a recent study published in Nature Nanotechnology, Hebrew University of Jerusalem (HU)'s Professor Danny Porath and his team at HU's Institute of Chemistry and the Center for Nanoscience and Nanotechnology, helped move the needle closer to such applications by demonstrating a highly-reliable method to measure electric currents that pass through a DNA molecule. They were able to locate and identify individual molecules between the electrodes and to measure significant electric currents in individual DNA molecules. Their most surprising finding was that the current passes through the DNA backbone, contrary to prior assumptions in the scientific community that the current flowed along DNA base-pairs. "Our method's high degree of reliability, experimental reproducibility and stability allows for a wide range of experiments, in which researchers may learn about the conduction properties of DNA and bring the field closer to creating DNA-based medical detectors and electronic circuits," shared Porath.

Team-member HU PhD student Roman Zhuravel pulled his weight, overcoming long-held technical difficulties to develop a technique that could reliably attach a single DNA molecule to electric contacts. To verify that most of the current passes through the backbone, he created discontinuities in the backbone itself--on both sides of the double-helix--and saw that, in this case. there was no current.

For Porath, these findings are a career highlight, "we were able to debunk a twenty-year-old paradigm. While many technical hurdles still need to be worked out, we've taken a big step forward toward the holy grail of building a DNA-based electronic circuit."
-end-
The study was led by Porath in conjunction with Alexander Kotlyar at Tel Aviv University, the late Yossi Sperling from the Weizmann Institute, and researchers from Cyprus, Spain, the United States and India.

The Hebrew University of Jerusalem

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.