New research provides clues on optimizing cell defenses when viruses attack

September 29, 2020

Science's pursuits of unraveling how human cells fight viral infections kicked into high gear in 2020 with the devastating emergence of the SARS-CoV-2 virus.

A study published recently in eLife by University of California San Diego scientists describes fresh details about the mechanisms involved when individual human cells are attacked by viruses, with possible implications for COVID-19 clinical treatment. The research helps advance science's understanding of interferons, a key group of immune response proteins released naturally by human cells when a virus is detected.

In response to a viral infection, human cells synthesize and secrete interferon-alpha, a chemical that triggers a series of biochemical reactions in cells, leading to the production of gene products that work to kill viruses or limit their spread. Interferon-alpha has been used clinically for more than 50 years in the treatments of diseases such as hepatitis B and C and HIV.

However such efforts have been limited because interferon-alpha, in addition to inducing antiviral effects, also triggers cell refractoriness--or insensitivity--to further treatments. This stalled effectiveness takes hold within hours after drug administration and lasts for several days, resulting in a low therapeutic response rate.

Looking into the details of these processes, Biological Sciences PhD student Anusorn Mudla, Associate Professor Nan Hao and their colleagues used a combination of experimental analyses and mathematical modeling to describe the intricate time-dependent regulatory mechanisms that human cells use to control the duration and strength of antiviral responses triggered by interferon. Their efforts resulted in the identification of a time delay in the production of USP18, an inhibitory factor that triggers cell refractoriness to prolonged interferon treatments.

"Based on these findings, repetitive administrations of interferon to cells, with the duration shorter than the delay time, are less able to induce this inhibitory factor. This could potentially suggest strategies leading to a higher therapeutic response rate than the routine chronic treatment of the drug," said Hao, a researcher in the Section of Molecular Biology and the study's senior author.

The findings are especially relevant given the urgent need for new defense tactics against the SARS-CoV-2 virus and the global COVID-19 pandemic. The new findings shed light on possible ways to enhance the effectiveness of interferon for future clinical use.

"Recent studies have shown that SARS-CoV-2 is especially sensitive to interferon-alpha, compared to other coronaviruses, making interferon treatment a potential strategy to prevent SARS-CoV-2 infection," said Hao.

Based on this finding, researchers could now design time-dependent administrations of interferon in an effort to minimize the production of this inhibitory factor and boost therapeutic responses.
The full author list includes: Anusorn Mudla, Yanfei Jiang, Kei-ichiro Arimoto, Bingxian Xu, Adarsh Rajesh, Andy Ryan, Wei Wang, Matthew Daugherty, Dong-Er Zhang and Nan Hao.

This work was supported by the National Institutes of Health (R01 GM111458, R01 CA177305, R01 CA232147 and R35 GM133633), Pew Biomedical Research scholars, the DPST training scholarship from the Royal Thai government and the Cellular and Molecular Genetics training grant (T32 GM007240).

University of California - San Diego

Related Viruses Articles from Brightsurf:

Sorting out viruses with machine learning
Researchers at Osaka University created a machine-learning system to identify single viral particles that cause respiratory diseases, including coronavirus, using silicon nanopores.

The rafts used by viruses
The study may suggest new strategies to limit virus attacks and prevent or combat diseases like Sars and Covid-19 based on biomedical and engineering principles.

Animals keep viruses in the sea in balance
A variety of sea animals can take up virus particles while filtering seawater for oxygen and food.

Hundreds of novel viruses discovered in insects
New viruses which cause diseases often come from animals. Well-known examples of this are the Zika virus transmitted by mosquitoes, bird flu viruses, as well as the MERS virus which is associated with camels.

First video of viruses assembling
For the first time, researchers have captured images of the formation of individual viruses, offering a real-time view into the kinetics of viral assembly.

Plant viruses may be reshaping our world
A new review article appearing in the journal Nature Reviews Microbiology highlights the evolution and ecology of plant viruses.

Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum M√ľnchen and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.

How viruses outsmart their host cells
Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses?

Mobile, instant diagnosis of viruses
In a first for plant virology, a team from CIRAD recently used nanopore technology to sequence the entire genomes of two yam RNA viruses.

How ancient viruses got cannabis high
THC and CBD, bioactive substances produced by cannabis and sought by medical patients and recreational users, sprung to life thanks to ancient colonization of the plant's genome by viruses, U of T researchers have found.

Read More: Viruses News and Viruses Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to