Genetic gains for better grains

September 29, 2020

An African millet crop could be improved for growth in the dry, arid lands of Saudi Arabia by using information about its genome. Fonio is already well-adapted to this environment but has not had as much domestication as the major cereal crops, such as wheat, rice and maize. Gene targeting could lead to higher yields and larger grains.

"The Arabian Peninsula is home to 80 million people and needs to import 90 percent of its food," says KAUST plant scientist, Simon Krattinger, who led the study. "The major cereal crops that provide 50 percent of our daily calories cannot be grown sustainably in this region due to a lack of fresh water, poor soils and high temperatures."

"Fonio is an amazing, nutritious plant that thrives in dry and hot regions with poor soils. Our long-term goal is to improve fonio millet while maintaining its extraordinary properties," explains Krattinger.

KAUST researchers, with an international team of scientists, analyzed the genomes of domesticated and wild fonio millet plants from across Africa and then compared them with the genomes of other major cereal crops.

The analyses found two genes that had undergone selection in fonio. One of these two genes, called DeGs5-3A, is very similar to a rice gene that regulates grain width and weight. It showed a complete loss of diversity in domesticated fonio, suggesting that plants with this active gene had been artificially selected for their larger grains.

The other gene, called DeSh1-9A, was found to be mutated in some fonio domesticated varieties, and is similar to another mutation in domesticated African rice. The mutation reduces seed loss through a process called shattering: this is beneficial for wild varieties because it ensures seed dispersal and natural planting in the environment but reduces yield in cultivated crops.

Other gene variants that have been selected for in major cereal crops were also found to show a wild-plant-like nucleotide sequence in fonio. "Modifying these genes, for example with genome editing, could significantly improve fonio by producing larger seeds with no seed shattering," says KAUST postdoc Michael Abrouk. "Our next aim is to produce a fonio cultivar that has all the properties of a modern cereal but that retains drought tolerance, fast maturation and the ability to grow in sandy soils."

The researchers also identified factors that have impacted fonio's genetic diversity across Africa. "Adaptations to climate were not a big surprise," says Ph.D. student Hanin Ahmed. "A fonio cultivar grown in the Sahel zone of Mali requires different properties from a cultivar grown in the subtropical regions of southern Togo." Surprising, however, was the link identified between fonio's genetic patterns and ethnolinguistic groupings in Africa. For example, there were striking genetic differences between fonio cultivars collected from northern and southern Togo. Although partially related to climate, this diversity is also probably caused by cultural differences that have limited seed sharing between farmers of the two regions.

"Fonio is a semidomesticated crop that shows some adaptation to agricultural practices," says Krattinger. "Improvements to fonio could lead to a new cereal that can be widely and sustainably grown in dry and hot environments."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Genetic Diversity Articles from Brightsurf:

In the Cerrado, topography explains the genetic diversity of amphibians more than land cover
Study shows that a tree frog endemic to a mountainous region of the Brazilian savanna is unable to disperse and find genetically closer mates when the terrain is rugged, potentially endangering survival of the species

New DNA sequencing technique may help unravel genetic diversity of cancer tumors
Understanding the genetic diversity of individual cells within a cancer tumor and how that might impact the disease progression has remained a challenge, due to the current limitations of genomic sequencing.

Researchers uncover the arks of genetic diversity in terrestrial mammals
Mapping the distribution of life on Earth, from genes to species to ecosystems, is essential in informing conservation policies and protecting biodiversity.

Seahorse and pipefish study by CCNY opens window to marine genetic diversity May 08, 2020
The direction of ocean currents can determine the direction of gene flow in rafting species, but this depends on species traits that allow for rafting propensity.

Study helps arboreta, botanical gardens meet genetic diversity conservation goals
In a groundbreaking study, an international team of 21 scientists evaluated five genera spanning the plant tree of life (Hibiscus, Magnolia, Pseudophoenix, Quercus and Zamia) to understand how much genetic diversity currently exists in collections in botanical gardens and arboreta worldwide.

Study reveals rich genetic diversity of Vietnam
In a new paper, Dang Liu, Mark Stoneking and colleagues have analyzed newly generated genome-wide SNP data for the Kinh and 21 additional ethnic groups in Vietnam, encompassing all five major language families in MSEA, along with previously published data from nearby populations and ancient samples.

Coastal pollution reduces genetic diversity of corals, reef resilience
A new study by researchers at the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology found that human-induced environmental stressors have a large effect on the genetic composition of coral reef populations in Hawai'i.

New world map of fish genetic diversity
An international research team from ETH Zurich and French universities has studied genetic diversity among fish around the world for the first time.

Texas A&M study reveals domestic horse breed has third-lowest genetic diversity
A new study by Dr. Gus Cothran, professor emeritus at the Texas A&M School of Veterinary Medicine & Biomedical Sciences, has found that the Cleveland Bay horse breed has the third-lowest genetic variation level of domestic horses, ranking above only the notoriously inbred Friesian and Clydesdale breeds.

Genetic diversity facilitates cancer therapy
Cancer patients with more different HLA genes respond better to treatment.

Read More: Genetic Diversity News and Genetic Diversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.