Skoltech research makes it easier to pinpoint brain activity in EEG studies

September 29, 2020

Skoltech researchers have proposed a fast and accurate numerical method of addressing the problem plaguing electroencephalography (EEG) studies that monitor the brain's electrical activity -- having to laboriously locate the source of EEG signal in the brain due to the low spatial resolution of this method. The new approach may help improve both medical and research applications of EEG. The paper was published in IEEE Transactions on Biomedical Engineering.

Suppose you want to study the properties and activity of a human brain without cracking open the brain owner's skull (invasive research methods have their applications too, but those are understandably limited). You could put the brain, with its owner, into an MRI machine, and that's how most of those trendy studies in the news are done. MRI can offer great spatial resolution in that you could locate brain activations quite accurately. But it is exasperatingly slow, capturing processes that take minutes when a human brain's typical reaction times are in the span of tens and hundreds of milliseconds. Then there's MEG, magnetoencephalography, which is very accurate and more attuned to the quick thinking of humans but requires extremely expensive equipment that needs to be cooled down with liquid helium and operated in a magnetically shielded room.

EEG, electroencephalography, however, is much simpler and easier to set up and use, and it provides a very good temporal resolution; that is why it is so widely used in healthcare and research. There's just one catch, explains Mikhail Malovichko, a coauthor of the study: even a small active area of the cortex generates electrical potential on a large portion of the surface of the head, so an accurate localization of small active patches of the brain is a challenging mathematical task, the so-called inverse EEG problem.

To solve this problem, researchers normally use MRI scans to build a model of the subject's head, place some candidate electric dipoles, essentially best guesses for where the signals might be coming from, and have a computer tinker with the model until its output fits the actual signal measured on the head. For this, the machine has to first solve many complementary forward problems: figure out what kinds of electrical activity these candidate dipoles would generate.

"This approach is universal. The preliminary solution of forward problems reduces the inverse EEG problem to a small system of linear equations, which is of the same type regardless of the position of candidate dipoles and the numerical method used to solve the forward problem. But if one needs to consider each subject's anatomical features, then the forward problem has to be solved by the finite element method, a very resource-intensive numerical procedure," says Nikolay Koshev, another coauthor of the study.

That takes quite a lot of time, so Malovichko and his colleagues from the Skoltech Center for Data-Intensive Science and Engineering (CDISE) have proposed to approach this challenge in a different way. Their solution for the inverse EEG problem directly "backpropagates" measured signals from the skin inside the head down to the cortex. This requires reframing the whole task as a Cauchy problem, a type of mathematical problem that is known to be unstable for EEG: that means even slight deviations in the input, for instance, from unavoidable measurement errors, can significantly skew the result. Yet recent research has brought new approaches to tackling these unstable problems efficiently, and the scientists used them in their research.

"In essence, instead of treating each candidate electric dipole separately and having to solve the forward problem first for each of them, the algorithm now has to solve just one inverse problem, which is, however, of a rather peculiar kind. This helps speed up the processing of EEG data and increases accuracy for source localization; in addition, the algorithm explicitly incorporates the information on how the brain surface is shaped," Mikhail Malovichko says.

"We believe our approach will open the door for a new generation of fast and accurate algorithms for the inverse EEG problem," he concludes.
-end-


Skolkovo Institute of Science and Technology (Skoltech)

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.