New discovery helps researchers rethink organoid cultures

September 29, 2020

Organoids are stem cell-based tissue surrogates that can mimic the structure and function of organs, and they have become a key component of numerous types of medical research in recent years. But researchers from The University of Texas at Austin have uncovered problems with the conventional method for growing organoids for common experiments that may cause misleading results.

The researchers discovered that the size of organoids differ depending on where they are located within the hydrogel material called extracellular matrix (ECM) that is commonly used in biomedical research. The team found that organoids on the edges of a dome-shaped ECM respond differently to chemical or biological stimuli compared to those in the center of the dome.

This observation means one organoid in the core might react positively to a new treatment or drug, while another one on the edge could have a negative reaction, potentially muddying the results of an experiment. Ideally, organoids would be consistent in size and reaction in preclinical experiments.

"There are hundreds of organoids in the hydrogel dome, and they're showing different sizes, different functions, and that can be problematic" said Woojung Shin, a postdoctoral fellow and recent Ph.D. graduate from the Cockrell School of Engineering's Department of Biomedical Engineering, who discovered the problem. "You may get very different results from what would actually happen in the human body as a result."

The findings were published recently in Cell Press' iScience. The team includes researchers from the Biomimetic Microengineering Laboratory in the Cockrell School and the Livestrong Cancer Institutes of UT's Dell Medical School.

The research began when Shin noticed that something felt off while examining organoids. They were slightly different sizes based on their location in the sample.

They repeated the experiment and identified the same issues time after time with different organoid lines. The team found morphogens in the culture medium -- signaling molecules that are essential for organoid growth -- that can spread and create a "gradient" within the hydrogel domes. One of the representative morphogens, Wnt3a, was extremely unstable. A computational simulation confirmed that the size difference in organoids is likely explained by the morphogen gradient and its instability.

The paper mainly focuses on the problem the researchers uncovered, but it also offers a roadmap for finding solutions. The key, the researchers say, is to stabilize the Wnt3a protein across the sample, reducing the size of the gradient created and, subsequently, the location-based differences in the organoids.

Shin is a member of biomedical engineering assistant professor Hyun Jung Kim's research group. She focuses on disease modeling and bioinspired organ mimicry.

Organoids are an important part of the ongoing research conducted by Kim and his group. The team uses nature's engineering principles, or biomimetic engineering, to solve the fundamental questions about human health and disease, most notably through its organ-on-a-chip technology.

Continuing to refine organoid research principles is key to the success of Kim's group as well as a host of different types of medical research. The paper mentions disease modeling, tissue engineering, patient-specific validation of new drug candidates and research into the relationship between demographics and disease as areas that have benefitted from organoid research.

"We really want to have reproducible and reliable experimental results," Kim said. "What we've found here is that we all need to be more cautious about how we interpret data, and then maybe we can decrease the risk of misinterpretation."

University of Texas at Austin

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to