Chemical derived from vitamin-E shows early promise as cancer drug

September 30, 2004

AUSTIN, Texas - By studying cancer in mice, researchers at The University of Texas at Austin have gained preliminary evidence that a novel compound that resembles vitamin E halves the size of tumors and the ability of cancer to spread to other body sites.

"We have clear evidence that this chemical is directly causing cancer cells to die," said Kimberly Kline, a nutrition professor in the Department of Human Ecology who directed the research in collaboration with Bob G. Sanders, a professor in the School of Biological Sciences.

The findings will be published in the October issue of Experimental Biology and Medicine. They result from studies involving treatment of genetically identical mice, which were given the novel vitamin E compound either orally or by aerosol.

Based on earlier, similar findings by Kline and colleagues, the National Cancer Institute is funding national efforts to investigate the ability of this novel compound, RRR-alpha-tocopherol ether acetic analog (alpha-TEA), to prevent colon and breast cancers in preclinical animal models.

Mice in the study were treated with alpha-TEA for 21 days after an injection of mouse-derived mammary cancer cells that normally would have formed a tumor mass and spread (metastasized) to the animals' lungs. Regardless of whether alpha-TEA was administered to the mice by mouth (orally) or via breathing (aerosol), the compound was capable of reducing the primary tumor mass by greater than half.

In addition, the compound was capable of reducing tumor lesions (metastases) in the lung that were big enough to see with the naked eye. For example, only one of 10 alpha-TEA aerosol-treated mice developed visible lung tumor lesions in comparison to five of 10 untreated control mice. None of the treated animals showed any type of general symptoms of toxicity to alpha-TEA, which Kline chose for further study in 1997 from 50 candidates.

Because cancer may result from just one normal cell going awry, Kline and former graduate student Karla Lawson also used special microscope equipment to identify smaller cancer lesions. The equipment could pinpoint the injected cancer cells in the animals because the cells had previously been genetically modified by co-author LuZhe Sun from the University of Texas Health Science Center in San Antonio to fluoresce bright green under proper exposure.

Using this fluorescent cue, Kline and colleagues determined that mice treated with aerosolized alpha-TEA had less than half the number of lung micrometastases as untreated mice (an average of 31 versus 73 detected cancer cells or small clusters of such cells). In addition, 48 percent of nearby lymph nodes of those mice lacked any microscopic signs of cancer, though these structures are where the cancer would likely spread. Only four percent of lung-related lymph nodes in controls were cancer-free. Treated mice that did develop microscopic signs of cancer in the lymph nodes had only one or two lesions, rather than the six or seven of untreated counterparts.

Kline, who holds the Julian C. Barton Professorship in Nutrition, also investigated how alpha-TEA impacts breast cancer cells, using cells grown in plastic containers. When exposed to alpha-TEA, the cancer cells showed only 20 percent of their normal ability to multiply and produce new cells. In addition to blocking the cancer cells' ability to divide, alpha-TEA caused the cancer cells to shrink and die through a process called apoptosis compared to untreated breast cancer cells.

"One reason that alpha-TEA is such a potent anti-cancer agent is that it impacts on numerous anti-growth and pro-death cellular processes in cancer cells but not normal cells," said Kline.

The researchers also investigated whether another derivative of vitamin E called RRR-alpha-tocopheryl succinate or VES, was as effective. VES was effective when administered by aerosol but was not effective when given orally, probably because it is broken down into an inactive chemical form by intestinal enzymes.

Kline will continue analyzing alpha-TEA activity and cellular effects in mice. Meanwhile, the chemical is going through more detailed toxicity evaluations and analyses for its preventive and treatment potential by researchers receiving support from the Rapid Access to Preventive Intervention Development (RAPID) program of the National Cancer Institute.

"Our research is promising at this stage, but there's a lot of further investigations that have to be conducted before alpha-TEA can be cleared by the Federal Drug Administration for testing in humans," Kline said.
-end-
NOTE: This research was supported by a grant from the Foundation for Research, and Public Health Service grants from the National Cancer Institute and from the National Institute of Environmental Health Sciences.

To obtain an image of fluorescing mouse mammary cancer cells, contact Barbra Rodriguez in the College of Natural Sciences at brodriguez@mail.utexas.edu, or 512-232-0675.

University of Texas at Austin

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.