Bioceramic orbital plate implant

September 30, 2005

The remarkable progress of ceramics in recent years has resulted in the development of materials with chemical, physical and mechanical properties that are suitable for biomedical applications.  Ceramic materials used for this purpose are known as bioceramics and their fields of application include orthopedic, odontosthomathology, ophthalmology, plastic and cosmetic surgery. Among the bioceramic materials that are being developed, tricalcium phosphate, Ca3(PO4) 2 and hydroxyapatite Ca10(PO4)6(OH)2 are most commonly considered for bone graft applications.

In a study in the open access journal AZojomo*, porous biphasic calcium phosphate orbital plate implants consisting of tricalcium phosphate and hydroxyapatite were developed as a cheaper alternative to commercially available implants. Biocompatibility, vascularization, resorption, bone induction and bone conduction are results are reported and the materials' potential as an alternative are presented at
AZojomo is based on the patented OARS (Open Access Rewards System) publishing protocol. The OARS protocol represents a unique development in the field of scientific publishing - the distribution of online scientific journal revenue between the authors, peer reviewers and site operators with no publication charges, just totally free to access high quality, peer reviewed materials science. [See and]

AZojomo publishes high quality articles and papers on all aspects of materials science and related technologies. All the contributions are reviewed by a world class panel of editors who are experts in a wide spectrum of materials science. [See]


Related Ceramics Articles from Brightsurf:

FEFU scientists helped design a new type of ceramics for laser applications
Material scientists from Far Eastern Federal University (FEFU) joined an international team of researchers to develop new nanocomposite ceramics (Ho3+:Y2O3-MgO) that can be employed in high-capacity laser systems operating in the medium infrared range (IR) of 2-6 micrometers.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists develop sorbent for purifying water from radioactive elements
Scientists from Far Eastern Federal University (FEFU) in collaboration with colleagues from the Institute of Chemistry FEB RAS come up with a smart technology for the synthesis of sorbent based on a ''tungsten bronze'' compound powder (Na2WO4) aimed to purify industrial and drinking water from hazardous radionuclides cesium (137Cs), and strontium (90Sr), as well as for effective processing of liquid radioactive waste.

Understanding ceramic materials' 'mortar' may reveal ways to improve them
New research shows that in the important ceramic material silicon carbide, carbon atoms collect at those grain boundaries when the material is exposed to radiation.

Current model for storing nuclear waste is incomplete
The materials the United States and other countries plan to use to store high level nuclear waste will likely degrade faster than anyone previously knew, because of the way those materials interact, new research shows.

FEFU scientists participate in development of ceramic materials that are IR-transparent
Scientists from Far Eastern Federal University (FEFU) teamed up with colleagues from Institute of Chemistry (FEB RAS), Institute for Single Crystals (Ukraine), and Shanghai Institute of Ceramics (Chinese Academy of Sciences) to develop Y2O3?MgO nanocomposite ceramics with uniform distribution of two phases, microhardness over 11 GPa, and average grain size of 250 nm.

Ceramic industry should use carbon reducing cold sintering process says new research
A new techno-economic analysis, by a team led by a researcher from WMG at the University of Warwick, shows that the energy intensive ceramic industry would gain both financial and environmental benefits if it moved to free the cold sintering process from languishing in labs to actual use in manufacturing everything from high tech to domestic ceramics.

New technique to improve ductility of ceramic materials for missiles, engines
Purdue University researchers have developed a new process to help overcome the brittle nature of ceramics and make it more ductile and durable.

Lasers enable engineers to weld ceramics, no furnace required
Smartphones that don't scratch or shatter. Metal-free pacemakers. Electronics for space and other harsh environments.

FEFU scientists to broaden ideas about reactive sintering of transparent ceramics
Green bodies' porous structure, i.e. mesostructure, affects dramatically the functional parameters of the optical ceramics obtained by reactive sintering.

Read More: Ceramics News and Ceramics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to