Adult stem cells aid recovery in animal model of cerebral palsy

September 30, 2005

Adult stem cell therapy quickly and significantly improves recovery of motor function in an animal model for the ischemic brain injury that occurs in about 10 percent of babies with cerebral palsy, researchers report.

Within two weeks, treated animals were about 20 percent less likely to favor the unaffected side of their bodies and experienced about a 25 percent improvement in balance, compared to untreated controls, Medical College of Georgia researchers say.

Their findings are being presented during the 34th annual meeting of the Child Neurology Society Sept. 28-Oct. 1 in Los Angeles.

"We found that when these cells, provided by Athersys, Inc., were injected directly into the brain, it significantly improves the outcome in the animals," says Dr. James E. Carroll, chief of the MCG Section of Pediatric Neurology and the study's principal investigator.

Athersys, Inc., a Cleveland-based biopharmaceutical company pursuing cell therapy programs in cardiovascular disease, stroke, cancer and other diseases, funded the research in which about 200,000 cells were injected directly into the brain injury site.

The adult stem cells, called multipotent progenitor cells because of their ability to make different types of tissue, were taken from the bone marrow of rats and expanded by Athersys for dosing in the injury model, Dr. Carroll says.

Seven days after injury, stem cells were injected directly into the brains of 22 animal models through a tiny hole in the skull. As with human transplant recipients, the animals were placed on immunosuppressive therapy to avoid rejection, although Athersys' experience in multiple animal models for human disease has shown donor-recipient matches and immunosuppression are not required.

Behavioral tests seven days after transplant showed a trend toward recovery and significant recovery by day 14. About 1 percent to 2 percent of the transplanted cells actually survived, apparently replacing some cells destroyed by the original injury, while others helped injured cells recover.

"Recovery might be even more important in baby brains than forming new cells," Dr. Cesario V. Borlongan, neuroscientist at MCG and the Veterans Affairs Medical Center in Augusta, says of newborn brains that recover more readily than adult brains. Dr. Borlongan, a co-author on the abstract, is exploring stem cell therapy's potential for aiding stroke recovery, including the use of clinical-grade human adult cells provided by Athersys in a stroke animal model. About 80 percent of strokes are caused by clots that cause ischemic brain injury similar to that of cerebral palsy.

The MCG researchers have evidence that the healing benefit of stem cells comes from nourishing factors they secrete. The cells seem attracted by chemokines, growth factors that rally to an injury site, Dr. Carroll says. Next steps include looking at longer-term recovery and at whether surviving stem cells actually function as brain cells, networking with other cells by forming points of communication called synapses.

Perhaps most importantly, they also will look at whether stem cells produce similar results when they are given intravenously rather than injected directly into the injury site, Dr. Carroll says. "If the ideal way of doing it scientifically doesn't work, why move on from here?" he says. "Now that we know it does work, we are going to look at different methods of injection to try and find the one that is the easiest. We think the chemokines, at least in part, attract the cells, so we hope it will work even when given through the bloodstream."

He notes that the therapy likely will need to be done soon after injury. Whether this therapy could help the some 500,000 people in the United States living with cerebral palsy still must be explored, he says.

He and Dr. Borlongan note much work needs doing before their findings might move to clinical trials. But they are optimistic that the availability of clinical-grade cells would expedite such a move.

"We hope this will eventually be something that can be used in the neonatal intensive care unit in babies with severe asphyxial brain injuries," Dr. Carroll says of cerebral palsy patients. He and other pediatric neurologists and neonatologists already have begun to discuss such possibilities.

"These results suggest another promising avenue for stem cell therapy, this time to help newborn babies recover from a potentially devastating injury of birth for which there currently is no treatment," says Dr. Gil Van Bokkelen, chairman and chief executive officer of Athersys.

Ischemic brain injury accounts for about 10 percent of cerebral palsy, broadly defined as brain injury that occurs before or during birth, and about 80 percent of strokes. For every 1,000 babies born, one or two have cerebral palsy, with consequences ranging from undetectable to major physical and mental impairment. Currently there is no treatment to repair or reduce the damage of cerebral palsy; tPA was approved in 1996 by the U.S. Food and Drug Administration as the first stroke treatment to reduce the damage of ischemic injuries.

Co-authors on the study include Dr. David Hess, chair of the MCG Department of Neurology; Dr. Lin Xu, research scientist; Drs. Noriyuki Matsaukawa, Guolong Yu, Takao Yasuhara and Koichi Hara, postdoctoral fellows; and Athersys scientists Robert Mays, Jim Kovach and Robert Deans.
-end-


Medical College of Georgia at Augusta University

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.