Epigenomics discovery yields new information about fat cells

September 30, 2010

BOSTON -By creating a "map" of histone modifications in fat cells, investigators have discovered two new factors that regulate fat formation, a key step on the road to better understanding obesity, diabetes and other metabolic disorders. Led by investigators at Beth Israel Deaconess Medical Center (BIDMC) and the Broad Institute, the study appears in the October 1 issue of the journal Cell.

"These findings help to demonstrate the power of epigenomic mapping when it comes to gleaning key insights into fat cell formation," explains senior author Evan Rosen, MD, PhD, an investigator in the Department of Endocrinology, Diabetes and Metabolism at BIDMC and Associate Professor of Medicine at Harvard Medical School. Fat cells, also called adipocytes, play an integral role in regulating metabolism by controlling lipid and glucose balance.

To better understand how adipocytes control the genes that impart the specialized functions of these cells, the researchers turned to epigenomics, and specifically the arm of epigenomics known as histone modifications.

"Deoxyribonucleic acid [DNA] is tightly wound around proteins called histones, which, over time, can accumulate chemical modifications or 'marks,'" explains Rosen. "These marks instruct the cell which genes to turn on and off, and by mapping these modifications, we can gain important insights that would be unattainable through traditional means."

Unlike previous investigations, which examined fat cells at a single static time point, this new study mapped several histone modifications throughout the course of the fat cell development, using a technique called chromatin immunoprecipitation followed by massively parallel sequencing or ChIP-Seq. This method relies on the ability to sequence tens of millions of short stretches of DNA (in this case DNA bound to modified histones) and then to reassemble results into a coherent genome. In addition to following these histone markers across time, the scientists also mapped the markers across species.

"Our study looked at both mouse cells and human cells," explains Rosen. "This is key because each cell type can accumulate histone marks that actually have nothing to do with fat cell differentiation. Consequently, by comparing two different cell models, we were able to sift through and focus on the epigenetic marks that appeared in both cell types."

What emerged was a "core" set of histone modifications that formed the basis of a "road map" for the scientists to follow. And, by using this new map, the investigators discovered two transcription factors (proteins that control the copying of DNA into RNA) that regulate fat cell formation.

"We found two new transcription factors - SRF and PLZF - involved in fat cell development," explains Rosen. "We have essentially demonstrated how an epigenomic 'road map' can be used to identify biology that could not have been predicted through any other means." Subsequent experiments confirmed the proteins' roles in fat cell development: When either the SRF or the PLZF protein was decreased, fat cells generated at a faster rate and, conversely, when the amount of either protein was increased, fat cell development ceased.

"Although these particular studies were focused on the development of fat cells, we have reason to think that SRF and PLZF may be involved in the workings of mature fat cells as well," notes Rosen, adding that these new findings, therefore, have the potential to impact metabolic diseases such as obesity and Type 2 diabetes.

"The huge costs of obesity and metabolic disease, both in terms of health and from a financial standpoint, are making adipocyte biology increasingly important," he adds. "With these new findings we now have a better understanding of normal fat cell development, and going forward, we can compare normal fat cells to fat cells in disease states. If we can better understand why fat cells behave as they do, then we can work to develop therapies for obesity or diabetes."
This study was funded by grants from the National Institutes of Health and the American Diabetes Association.

Co-first authors of the study are Zhao Xu of BIDMC and Tarjei Mikkelsen of the Broad Institute. Coauthors include Broad Institute investigators Xiaolan Zhang, Li Wang and Eric Lander; and Jeffrey Gimble of the Pennington Biomedical Research Center, Louisiana University System.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks in the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is a clinical partner of the Joslin Diabetes Center and a research partner of the Harvard/Dana-Farber Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

Beth Israel Deaconess Medical Center

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.