Scientists define molecular on-off switches for cancer and autoimmunity

September 30, 2010

A new report published in the October 2010 print issue of The FASEB Journal (http://www.fasebj.org) offers a ray of hope in the search for new cancer drugs. By examining the seemingly conflicting roles of how oncogenes and tumor suppressor genes handle cellular stress, scientists from the Institute for Advanced Studies in New Jersey argue that each of these opposing systems could be potent drug targets in the effort to stop cancer. In addition, their hypothesis provides new insights into what contributes to immunological disorders such as chronic inflammation and autoimmune diseases.

"We hope the ideas put forward in this article will stimulate additional experiments to test these novel concepts," said Arnold Levine, Ph.D., co-author of the study from the Institute for Advanced Study in Princeton, New Jersey. "Among those experiments are the synthesis of new drugs to inhibit pathways that could change the course of a disease."

After a review of existing experimental literature, Levine and colleagues concluded that a new class of drugs could be developed to address the conflicting nature of oncogenes and tumor suppressor genes. Specifically, the research paper published in The FASEB Journal examines the roles of the p53 tumor suppressor and the oncogene, NF-kappaB. The p53 suppressor limits the consequences of stress by initiating cell death and promoting metabolic patterns in the cell. The oncogene NF-kappaB on the other hand, promotes cell division resulting in the synthesis of substrates for cell division. These two cellular responses, both of which have evolved to handle different types of stress, have adopted opposite strategies and cannot function in the same cell at the same time. As a result, Levine and colleagues speculate that drugs could be developed to take advantage of the fact that if one factor is activated, the other is rendered inactive. This could be achieved at several places in both the p53 and NF-kappaB pathways where regulatory proteins act on both with opposite functional consequences.

"Our cells use the p53 and NF-kappaB pathways to respond to cellular stress: one controls cancer, the other immunity. If they get out of balance, we're in trouble.," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Thanks to this work we can start restore the balance by means of new drugs."
-end-
Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve--through their research--the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Prashanth Ak and Arnold J. Levine. p53 and NF-kappaB: different strategies for responding to stress lead to a functional antagonism FASEB J. 2010 24: 3643-3652. DOI: 10.1096/fj.10-160549 ; http://www.fasebj.org/cgi/content/abstract/24/10/3643

Federation of American Societies for Experimental Biology

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.