Scientists reveal important clues to how bacteria and viruses are identified as enemies

September 30, 2010

A new research report in the October 2010 print issue of the Journal of Leukocyte Biology (http://www.jleukbio.org) sheds important light on how our immune systems detect invading organisms to be destroyed and removed from our bodies. The information from this research should ultimately help lead to the development of new drugs and treatments that allow health care providers to prevent runaway immune reactions that can have devastating consequences for people.

"Our study helps us to understand exactly how the immune system is activated when it comes across infection from bacteria or viruses," said Melanie J. Scott, M.D., Ph.D., an author of the research report from the Department of Surgery at the University of Pittsburgh, Pennsylvania. "The more information we have about how this process works, the more likely we are to be able to help our immune systems fight off attacks from infections."

To make this discovery, scientists examined the production of a specific part of the complement system (called "factor B") in macrophages, an immune cell that both attacks foreign invaders and marks them for death by other types of immune cells. The researchers wanted to know if a molecule found on the outside of bacteria (lipopolysaccharide) or a synthetic version of a molecule found in some viruses (polyI:C) would stimulate factor B production by macrophages. The levels of factor B produced inside the cell were measured, as was the amount released from the cell. Results showed that lipopolysaccharide used a specific receptor on the outside of cells (TLR4) to produce factor B. polyI:C also stimulated factor B production in macrophages, not through its specific cell surface receptor (TLR3) but through another receptor that is located within cells. This shows that bacteria and viruses can produce similar end results in activating the body's defense systems, but they use different pathways to do the activation.

"As this research shows, the immune system is incredibly complex. It also highlights the redundancy which is vital to our survival," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology. "Viruses and bacterial have evolved many strategies to avoid immune responses, but the immune system counters with additional tricks and alternative pathways. This research helps us better understand one very important set of redundant pathways that regulates a key defense mechanism and identifies therapeutic targets for controlling that response."
-end-
The Journal of Leukocyte Biology (http://www.jleukbio.org) publishes peer-reviewed manuscripts on original investigations focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Details: David J. Kaczorowski, Amin Afrazi, Melanie J. Scott, Joon H. Kwak, Roop Gill, Rebecca D. Edmonds, Yujian Liu, Jie Fan, and Timothy R. Billiar. The pattern recognition receptor ligands lipopolysaccharide and polyinosine-polycytidylic acid stimulate factor B synthesis by the macrophage through distinct but overlapping mechanisms. J Leukoc Biol 2010 88: 609. DOI: 10.1189/jlb.0809588 ; http://www.jleukbio.org/cgi/content/abstract/88/4/609

Federation of American Societies for Experimental Biology

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.