Knot in the ribbon at the edge of the solar system 'unties'

September 30, 2010

The unusual "knot" in the bright, narrow ribbon of neutral atoms emanating in from the boundary between our solar system and interstellar space appears to have "untied," according to a paper published online in the Journal of Geophysical Research.

Researchers believe the ribbon, first revealed in maps produced by NASA's Interstellar Boundary Explorer (IBEX) spacecraft, forms in response to interactions between interstellar space and the heliosphere, the protective bubble in which the Earth and other planets reside. Sensitive neutral atom detectors aboard IBEX produce global maps of this region every six months.

Analyses of the first map, released last fall, suggest the ribbon is somehow ordered by the direction of the local interstellar magnetic field outside the heliosphere, influencing the structure of the heliosphere more than researchers had previously believed. The knot feature seen in the northern portion of the ribbon in the first map stood apart from the rest of the ribbon as the brightest feature at higher energies.

While the second map, released publicly with the just-published paper, shows the large-scale structure of the ribbon to be generally stable within the six-month period, changes are also apparent. The polar regions of the ribbon display lower emissions and the knot diminishes by as much as a third and appears to "untie" as it spreads out to both lower and higher latitudes.

"What we're seeing is the knot pull apart as it spreads across a region of the ribbon," says Dr. David J. McComas, IBEX principal investigator and an assistant vice president at Southwest Research Institute in San Antonio. "To this day the science team can't agree on exactly what causes the knot or the ribbon, but by comparing different sky maps we find the surprising result that the region is changing over relatively short time periods. Now we have to figure out why."

As the IBEX spacecraft gathers a wealth of new information about the dynamic interactions at the edge of the solar system -- the region of space that shields our solar system from the majority of galactic cosmic ray radiation -- the IBEX team continues to study numerous theories about the source of the ribbon and its unusual features.

The paper, "The evolving heliosphere: Large-scale stability and time variations observed by the Interstellar Boundary Explorer," by D.J. McComas, M. Bzowski, P. Frisch, G.B. Crew, M.A. Dayeh, R. DeMajistre, H.O. Funsten, S.A. Fuselier, M. Gruntman, P. Janzen, M.A. Kubiak, G. Livadiotis, E. Mobius, D.B. Reisenfeld, and N.A. Schwadron, was published online Sept. 29 in the American Geophysical Union's Journal of Geophysical Research.

IBEX is the latest in NASA's series of low-cost, rapidly developed Small Explorers space missions. Southwest Research Institute in San Antonio leads and developed the mission with a team of national and international partners. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA's Science Mission Directorate in Washington.
-end-


Southwest Research Institute

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.