Researchers sequence genome of mosquito that spreads West Nile virus

September 30, 2010

RIVERSIDE, Calif. - Last year, 720 people in the United States became infected with West Nile virus, a potentially serious illness that is spread through the bite of a mosquito - the Culex mosquito - that has first fed on infected birds. Such mosquitoes have the virus eventually located in their salivary glands and transmit the disease to humans and animals when they bite to draw blood.

To understand the genetic makeup of the Culex mosquito, and how the insect is able to transmit this and other viruses, an international team of scientists, led by geneticists at the University of California, Riverside, has sequenced the genome of Culex quinquefasciatus, a representative of the Culex genus (or group) of mosquitoes.

A close study of the genome, the researchers say, could give scientists the clues they need to target specific Culex genes that are involved in the transmission of West Nile virus, St. Louis encephalitis, lymphatic filariasis and other diseases spread by the Culex group of mosquitoes. Knowledge of such genes would be an important step in developing strategies to combat the spread of these pathogens.

The genomes of Anopheles gambiae (which transmits malaria) and Aedes aegypti (which transmits yellow fever and dengue) were published in 2002 and 2007, respectively. Now, with the sequencing of Culex quinquefasciatus, scientists have completed the triangulation of entire genome sequences of three genera of mosquitoes that are the main vectors of deadly human diseases, and will have access to representative genomes from the three mosquito groups.

"We can now compare and contrast all three mosquito genomes, and identify not only their common genes but also what is unique to each mosquito," said Peter Arensburger, an assistant research entomologist in the Center for Disease Vector Research and the Department of Entomology, who led the substantial bioinformatics component of the multiyear research effort. "Moreover, now that we have sequenced the Culex genome, we can begin to identify which mosquito genes get turned on or turned off in response to infection - knowledge that is critical to developing strategies for preventing the transmission of West Nile virus and other disease vectors."

Study results appear in the Oct. 1 issue of Science.

The researchers report that Culex quinquefasciatus, also known as the southern house mosquito, has a genome size of 579 million nucleotides, which is intermediate between the genome sizes of Anopheles gambiae (278 million nucleotides) and Aedes aegypti (about 1380 million nucleotides). However, Culex quinquefasciatus has a higher number of genes (18,883 genes) than Anopheles gambiae (12,457 genes) or Aedes aegypti (15,419 genes).

"We do not know why this is the case," said Arensburger. "Culex quinquefasciatus is very widely distributed throughout the globe; the same species is found in California and South Africa. It is possible that the large number of genes in this mosquito helped it survive in a wide variety of habitats."

The researchers also report that the genome for Culex quinquefasciatus bears more similarity to the Aedes aegypti genome than the Anopheles gambiae genome.

Thirty-seven institutions collaborated with UC Riverside on the research project that began in 2004. Besides Arensburger, the UCR team includes Peter Atkinson, the director of the Center for Disease Vector Research and a professor of entomology, and Alexander Raikhel, a distinguished professor of entomology.

"We coordinated with researchers around the world to accomplish the sequencing of the Culex genome," said Atkinson, the senior author of the study and the principal investigator of the grants that funded UCR's contribution to the research. "We could not have done this without the outstanding computing support we received from UCR's Institute for Integrative Genome Biology. It enabled us to perform vast and complex analyses here on campus, and gave us the confidence to get the project going and completed."

With more than 1,200 described species, Culex is the most diverse and geographically widespread of the three mosquito genera. The adult mosquito measures 4-10 millimeters. Only females spread disease. Culex-transmitted diseases, such as West Nile virus, are difficult to eradicate because birds and animals the mosquito feeds on are mobile, capable of spreading disease quickly over large areas.

West Nile virus first appeared in the United States in the summer of 1999. Since then it has been found in all 48 contiguous states.

The research paper in Science is accompanied by a second paper, led by researchers at Boston College, Mass., and Iowa State University, that focuses on a set of immune genes in Culex quinquefasciatus. The paper explores why some of these genes are "upregulated" (show an increase in gene expression) while others are "downregulated" in response to pathogens. Arensburger, Atkinson and Raikhel are coauthors on the companion paper in the same issue of Science on Culex immunobiology with Raikhel's laboratory contributing significantly to this work.

With the sequencing of the Culex quinquefasciatus genome completed, UCR researchers will focus next on genes of particular interest to efforts aimed at preventing the spread of human diseases by these mosquitoes.
-end-
Grants from the National Institutes of Health supported UCR's contribution to the research.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.


University of California - Riverside

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.