Solar energy: Hydrogen for all seasons

September 30, 2015

Chemists from Ludwig-Maximilians-Universitaet (LMU) in Munich have developed novel porous materials called "covalent organic frameworks", which provide a basis for the design of polymeric photocatalysts with tunable physical, chemical and electronic properties.

Chemical systems that are capable of generating hydrogen gas by light-activated scission of water molecules (often termed artificial photosynthesis) represent a promising technology for the efficient storage of solar energy. However, the systems that have been developed so far suffer from various drawbacks, and intensive efforts are underway to discover alternative procedures that are both more practical and efficacious. Chemists led by Professor Bettina Lotsch, who has dual appointments in the Department of Chemistry at LMU and the Max Planck Institute for Solid State Research in Stuttgart now introduce a new class of porous organic materials that can be used as the basis for molecularly tunable photocatalysts for light-driven production of hydrogen gas. The researchers report their findings in the new issue of the online journal Nature Communications.

Lotsch and her colleagues are interested in the properties and practical applications of so-called covalent organic frameworks. These materials are composed of layers of regular two-dimensional molecular networks synthesized from simple organic precursors, and they exhibit a number of features that facilitate photocatalytic processes. "They form crystalline and porous semiconductors, whose chemical properties can be precisely tuned for a given application," as Bettina Lotsch explains. They are already under investigation as possible matrices for the storage of gases and for applications in sensor technology, and also have considerable potential in the field of optoelectronics.

More efficient and more economical

In collaboration with the group led by Christian Ochsenfeld, Professor of Theoretical Chemistry at LMU, Lotsch and her team have been exploring the potential of such porous polymers as photocatalysts. In their latest work, they chose so-called triphenylarenes as the basic subunits of their model matrix. "The great advantage of this class of materials is that the chemical and physical properties of the network can be readily engineered for different applications, simply by altering the structure of the precursors," says Vijay Vyas, a postdoc in Bettina Lotsch's group at the Max Planck Institute for Solid State Research. "This flexibility allowed us progressively to modulate their ability to produce hydrogen. Their performance parameters in this context are comparable to those of established photocatalysts based on carbon nitride and oxides." The planar layers of the new set of compounds are synthesized from hydrazine and a series of aromatic trialdehydes. In the resulting structure, the trialdehyde subunits are linked together by azine (=N-N=) bridges to form two-dimensional lattices.

Metal-based photocatalysts are often expensive to make and difficult to modify. "But since the properties of COFs can be readily and specifically altered, their performance characteristics can also be manipulated at will," says Frederik Haase, a member of Bettina Lotsch's group. They therefore provide a combination of features which make them ideal as a basis for the development of environmentally friendly and economical photocatalysts.

Bettina Lotsch summarizes the results of the study as follows: "We have now demonstrated, at the molecular level, that the structural, morphological and optoelectronic properties of covalent organic frameworks can be precisely tuned so as to maximize their photocatalytic activity." The advances made by the LMU chemists thus promise to make solar energy even more attractive as a future source of sustainable energy.
-end-


Ludwig-Maximilians-Universität München

Related Solar Energy Articles from Brightsurf:

'Transparent solar cells' can take us towards a new era of personalized energy
Solar power has shown immense potential as a futuristic, 'clean' source of energy.

CU Denver researcher analyzes the use of solar energy at US airports
By studying 488 public airports in the United States, University of Colorado Denver School of Public Affairs researcher Serena Kim, PhD, found that 20% of them have adopted solar photovoltaic (PV), commonly known as solar panels, over the last decade.

Researchers develop molecule to store solar energy
Researchers at Linköping University, Sweden, have developed a molecule that absorbs energy from sunlight and stores it in chemical bonds.

Converting solar energy to hydrogen fuel, with help from photosynthesis
Global economic growth comes with increasing demand for energy, but stepping up energy production can be challenging.

New nanodevice could use solar energy to produce hydrogen
Amsterdam, June 9, 2020 - Solar energy is considered by some to be the ultimate solution to address the current energy crisis and global warming and the environmental crises brought about by excessive consumption of fossil fuels.

Physicists develop approach to increase performance of solar energy
Experimental condensed matter physicists in the Department of Physics at the University of Oklahoma have developed an approach to circumvent a major loss process that currently limits the efficiency of commercial solar cells.

Lasers etch a 'perfect' solar energy absorber
In Light: Science and Applications, University of Rochester researchers demonstrate how laser etching of metallic surfaces creates the ''perfect solar energy absorber.'' This not only enhances energy absorption from sunlight, but also reduces heat dissipation at other wavelengths.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

New hybrid device can both capture and store solar energy
Researchers have reported a new device that can both efficiently capture solar energy and store it until it is needed, offering promise for applications ranging from power generation to distillation and desalination.

Materials that can revolutionize how light is harnessed for solar energy
Columbia scientists designed organic molecules capable of generating two excitons per photon of light, a process called singlet fission.

Read More: Solar Energy News and Solar Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.