Scientists use AI to develop better predictions of why children struggle at school

September 30, 2018

Scientists using machine learning - a type of artificial intelligence - with data from hundreds of children who struggle at school, identified clusters of learning difficulties which did not match the previous diagnosis the children had been given.

The researchers from the Medical Research Council (MRC) Cognition and Brain Sciences Unit at the University of Cambridge say this reinforces the need for children to receive detailed assessments of their cognitive skills to identify the best type of support.

The study, published in Developmental Science, recruited 550 children who were referred to a clinic - the Centre for Attention Learning and Memory - because they were struggling at school.

The scientists say that much of the previous research into learning difficulties has focussed on children who had already been given a particular diagnosis, such as attention deficit hyperactivity disorder (ADHD), an autism spectrum disorder, or dyslexia. By including children with all difficulties regardless of diagnosis, this study better captured the range of difficulties within, and overlap between, the diagnostic categories.

Dr Duncan Astle from the MRC Cognition and Brain Sciences Unit at the University of Cambridge, who led the study said: "Receiving a diagnosis is an important landmark for parents and children with learning difficulties, which recognises the child's difficulties and helps them to access support. But parents and professionals working with these children every day see that neat labels don't capture their individual difficulties - for example one child's ADHD is often not like another child's ADHD.

"Our study is the first of its kind to apply machine learning to a broad spectrum of hundreds of struggling learners."

The team did this by supplying the computer algorithm with lots of cognitive testing data from each child, including measures of listening skills, spatial reasoning, problem solving, vocabulary, and memory. Based on these data, the algorithm suggested that the children best fit into four clusters of difficulties.

These clusters aligned closely with other data on the children, such as the parents' reports of their communication difficulties, and educational data on reading and maths. But there was no correspondence with their previous diagnoses. To check if these groupings corresponded to biological differences, the groups were checked against MRI brain scans from 184 of the children. The groupings mirrored patterns in connectivity within parts of the children's brains, suggesting that that the machine learning was identifying differences that partly reflect underlying biology.

Two of the four groupings identified were: difficulties with working memory skills, and difficulties with processing sounds in words.

Difficulties with working memory - the short-term retention and manipulation of information - have been linked with struggling with maths and with tasks such as following lists. Difficulties in processing the sounds in words, called phonological skills, has been linked with struggling with reading.

Dr Astle said: "Past research that's selected children with poor reading skills has shown a tight link between struggling with reading and problems with processing sounds in words. But by looking at children with a broad range of difficulties we found unexpectedly that many children with difficulties with processing sounds in words don't just have problems with reading - they also have problems with maths.

"As researchers studying learning difficulties, we need to move beyond the diagnostic label and we hope this study will assist with developing better interventions that more specifically target children's individual cognitive difficulties."

Dr Joni Holmes, from the MRC Cognition and Brain Sciences Unit at the University of Cambridge, who was senior author on the study said: "Our work suggests that children who are finding the same subjects difficult could be struggling for very different reasons, which has important implications for selecting appropriate interventions."

The other two clusters identified were: children with broad cognitive difficulties in many areas, and children with typical cognitive test results for their age. The researchers noted that the children in the grouping that had cognitive test results that were typical for their age may still have had other difficulties that were affecting their schooling, such as behavioural difficulties, which had not been included in the machine learning.

Dr Joanna Latimer, Head of Neurosciences and Mental Health at the MRC, said: "These are interesting, early-stage findings which begin to investigate how we can apply new technologies, such as machine learning, to better understand brain function. The MRC funds research into the role of complex networks in the brain to help develop better ways to support children with learning difficulties."
-end-


Medical Research Council

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.