Nav: Home

Material for nuclear reactors to become harder

September 30, 2019

Scientists from NUST MISIS developed a unique composite material that can be used in harsh temperature conditions, such as those in nuclear reactors. The microhardness of the sandwich material is 3 times higher compared to the microhardness of its individual components. These properties withstand temperatures up to 700°?. The results of the research are published in Materials Letters.

To create a new generation of fast-neutron reactors, new structural materials are needed, because the steel, which is considered for use in the shells of fuel elements, is unable to withstand the required heating of 550-700°C.

One of the ways to obtain harder materials is creation of composites by methods of severe plastic deformation (SPD), that is, deformation in special machines under high pressure. As a result, composite materials that are harder than their individual components are obtained. At the same time, smaller, nanocrystalline structure is formed in the material, demonstrating rapid grain growth when heated. Hence, such materials have low thermal stability and lose microhardness when heated.

Scientists from NUST MISIS Laboratory for Hybrid Nanostructured Materials found a way to increase both the microhardness and the thermal stability of the composite material. For this, scientists used one of SPD methods, i.e. high-pressure torsion (HPT), which allowed creating a specific multilayer structure with vanadium alloy.

"We created a sample with 0,5 mm and 0,3 mm steel layers, adding 0,2 mm vanadium alloy in between. Hence, the overall thickness of the sample was 1 mm. During the HPT, the sample is placed between two flat-base strikers and compressed under an applied pressure of several HPa. The lower striker rotates and the surface friction forces the sample to deform by shear. As a result we obtained a thin multilayer structure," Stanislav Rogachev, head of the research, comments.

Evaluation of the resulting sample showed that after HPT, the strength of the "sandwich" increased by 3 times compared to the strength of each of the individual components. Moreover, the multilayer structure enabled the final material to withstand heating up to 700°C. Thus, for the first time a composite nanostructured sandwich material with such high thermal stability was obtained. Such material is promising for use in a number of high-tech areas, for example, in the previously mentioned nuclear reactors.

Next, scientists plan to continue experiments on SPD of metal composites. Specifically, the team is going to work with steel/zirconium, steel/copper and steel/aluminum combinations.

National University of Science and Technology MISIS

Related Research Articles:

More Research News and Research Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at