Nav: Home

Helping tobacco plants save water

September 30, 2019

Research in the Electronic Plants group at the Laboratory of Organic Electronics, Campus Norrköping, follows two main avenues. In one, scientists incorporate electronic circuits into plants, such as roses, in a method of storing energy. In the other, they are seeking ways to influence plant functions with bioelectronic devices aiming, for example, to give plants greater resistance to environmental stress.

"We can implant electronic devices into plants without damaging the plant. This research field is new, but we are starting to be able to influence plant physiology, and we hope that this will become an effective tool to study how plants function, but even find applications in agriculture and forestry", says Eleni Stavrinidou, who leads the research group in Electronic Plants at the Laboratory of Organic Electronics, Linköping University.

Scientists Iwona Bernacka-Wojcik and Miriam Huerta have managed to electronically deliver a common stress hormone known as ABA into a tobacco plant. The plant normally secretes this hormone when subjected to stress, for example, during drought or other extreme weather conditions. A solution containing the hormone is also sometimes sprayed onto plants in shops, to keep them fresh longer.

The researchers showed that after the hormone was delivered it spread through the leaf tissue, and that the small pores, the stomata, on the leaf surface closed, to prevent the release of water. The plant must optimise the opening and closing of the pores because when they are open it carries out photosynthesis, but at the same time it loses water.

"Using the new generation of ion pump, with a capillary form whose diameter is no thicker than a hair, we could electronically deliver ABA molecules into the leaves of tobacco plants without harming the plant. If the moisture remains in the plant, it becomes more resistant to, for example, drought", says Eleni Stavrinidou.

The lack of any damage to the leaf and the plant is an important part of the success, since plants do not repair damaged tissue as animals and humans do. Instead, the plant discards the damaged leaf or branch, and replaces it, in the optimal case, with a new leaf or shoot.

The tiny ion pump was developed a couple of years ago at the Laboratory of Organic Electronics. It consists of an electrode made from a conducting polymer inside a tiny container connected to a channel based on a polymer electrolyte. Ions are led through the thin channel out to exactly the correct position - inside a root fibre or leaf vein of a plant. The container in this case is filled with ABA. When a voltage is applied across the electrodes, one in the container and one external, the charged substance is transported out of the channel into the tissue. The rate of delivery of the substance is directly proportional to the current. Only the active substance is pumped out, nothing else, and there is no return flow to the pump.

"We can give the plant the exact dose it needs, with high precision", Iwona Bernacka-Wojcik says.
-end-
The results from the research - which may also contribute to a deeper understanding of plant physiology - have been published in the journal Small, Advanced Science News.

Funds for the research have been provided by, among others, the Knut and Alice Wallenberg Foundation, the Swedish Research Council, and the Swedish Foundation for Strategic Research. The project is also part of the innovation programme Fet Open HyPhOE, which is part of the EU's Horizon 2020 programme, and the strategic initiative in Advanced Functional Materials at Linköping University. http://www.hyphoe.eu

Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant, Iwona Bernacka-Wojcik, Miriam Huerta, Klas Tybrandt, Michal Karady, Mohammad Yusuf Mulla, David J. Poxson, Erik O. Gabrielsson, Karin Ljung, Daniel T. Simon, Magnus Berggren, and Eleni Stavrinidou, Small 2019. DOI 10.1002/smll.201902189

Read mote at https://liu.se/en/research/electronic-plants

Contact: Eleni Stavrinidou, +46 11 363352, eleni.stavrinidou@liu.se

Linköping University

Related Plants Articles:

Not all plants are good for you
A new scientific review highlights a significant global health issue related to plants that sicken or kill undernourished people around the world, including those who depend upon these plants for sustenance.
How plants react to fungi
Using special receptors, plants recognize when they are at risk of fungal infection.
Flame retardants -- from plants
Flame retardants are present in thousands of everyday items, from clothing to furniture to electronics.
Directed evolution comes to plants
Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.
Plants are also stressed out
What will a three-degree-warmer world look like? When experiencing stress or damage from various sources, plants use chloroplast-to-nucleus communication to regulate gene expression and help them cope.
How plants defend themselves
Like humans and animals, plants defend themselves against pathogens with the help of their immune system.
An easier way to engineer plants
MIT researchers have developed a genetic tool that could make it easier to engineer plants that can survive drought or resist fungal infections.
Plants can smell, now researchers know how
Plants don't need noses to smell. The ability is in their genes.
Plants as antifungal factories
Researchers from three research institutes in Spain have developed a biotechnological tool to produce, in a very efficient manner, antifungal proteins in the leaves of the plant Nicotiana benthamiana.
How plants cope with stress
With climate change comes drought, and with drought comes higher salt concentrations in the soil.
More Plants News and Plants Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.