Nav: Home

Growing old together: A sharper look at black holes and their host galaxies

September 30, 2019

New Haven, Conn. - Some relationships are written in the stars. That's definitely the case for supermassive black holes and their host galaxies, according to a new study from Yale University. The "special relationship" between supermassive black holes (SMBHs) and their hosts -- something astronomers and physicists have observed for quite a while -- can now be understood as a bond that begins early in a galaxy's formation and has a say in how both the galaxy and the SMBH at its center grow over time, the researchers note.

A black hole is a point in space where matter has been compacted so tightly that it creates intense gravity. This gravity is strong enough that even light can't escape its pull. Black holes can be as small as a single atom or as large as billions of miles in diameter. The biggest are called "supermassive" black holes and have masses equal to that of millions -- or even billions -- of suns.

SMBHs are often found at the center of large galaxies, including our own galaxy, the Milky Way. Although SMBHs were theoretically expected to exist, the first observational hints were detected in the 1960s; earlier this year, the Event Horizon Telescope released the first silhouette of a black hole in the galaxy Messier 87. Astrophysicists continue to theorize about the origins of black holes, how they grow and glow, and how they interact with host galaxies in different astronomical environments.

"There has been a lot of uncertainty regarding the SMBH-galaxy connection, in particular whether SMBH growth was more tightly connected to the star formation rate or the mass of the host galaxy," said Yale astrophysicist Priyamvada Natarajan, senior investigator of the new study, which appears in the journal Monthly Notices of the Royal Astronomical Society. "These results represent the most thorough theoretical evidence for the former -- the growth rate of black holes appears to be tightly coupled to the rate at which stars form in the host."

Natarajan has made significant contributions to our understanding of the formation, assembly, and growth of SMBHs, with respect to their environs. Her work speaks to the underlying question of whether these connections are mere correlations or signs of deeper causation.

Natarajan and her team -- first author Angelo Ricarte and Michael Tremmel of Yale and Thomas Quinn of the University of Washington -- used sophisticated sets of simulations to make the discovery. Called Romulus, the cosmological simulation follows the evolution of different regions of the universe from just after the Big Bang until the present day and includes thousands of simulated galaxies that reside in a wide variety of cosmic environments.

The Romulus simulations offer the highest-resolution snapshot of black hole growth, providing a fully emergent and sharper view of how black holes grow within a wide range of host galaxies, from the most massive galaxies located in the center of galaxy clusters -- very dense regions like crowded city centers -- to much more common dwarf galaxies that inhabit the sparser suburbs.

"At a time when the drivers of black hole growth are unclear, these simulations offer a simple picture. They simply grow along with the stars independent of the galaxy's mass, the larger environment, or the cosmic epoch," said Ricarte, a former graduate student of Natarajan's who is now a postdoctoral fellow at Harvard.

One of the more intriguing findings of the study, Ricarte noted, has to do with the way the largest black holes in the universe interact with their host galaxies over time. The researchers found that SMBHs and their hosts grow in tandem, and that the relationship is "self-correcting," independent of the kind of environment they inhabit.

"If the SMBH starts to grow too rapidly and gets too big for its galactic home, physical processes ensure that its growth slows down relative to the galaxy," Tremmel explained. "On the other hand, if the SMBH's mass is too small for its galaxy, the SMBH's growth rate increases relative to the size of the galaxy to compensate."
-end-
Support for the research came from a number of sources, including NASA and the National Science Foundation. The research is part of the Blue Waters computing project supported by the National Science Foundation and the University of Illinois at Urbana-Champaign.

Watch a short video about the study here: https://youtu.be/BpYhRQAeZVA

Yale University

Related Black Hole Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.