Nav: Home

Building a brighter way for capturing cancer during surgery

September 30, 2019

University of Texas at Dallas researchers have demonstrated that imaging technology used to map the universe shows promise for more accurately and quickly identifying cancer cells in the operating room.

In a study published in the Sept. 14 edition of the journal Cancers, Dr. Baowei Fei and colleagues showed that hyperspectral imaging and artificial intelligence could predict the presence of cancer cells with 80% to 90% accuracy in 293 tissue specimens from 102 head and neck cancer surgery patients.

Fei, professor of bioengineering and the Cecil H. and Ida Green Chair in Systems Biology Science in the Erik Jonsson School of Engineering and Computer Science, recently received a $1.6 million grant from the Cancer Prevention & Research Institute of Texas (CPRIT) to further develop the technology, called a smart surgical microscope.

Once developed, the technique would need to be tested in clinical studies before it could be used in operating rooms.

"We hope that this technology can help surgeons better detect cancer during surgery, reduce operating time, lower medical costs and save lives," Fei said. "Hyperspectral imaging is noninvasive, portable and does not require radiation or a contrast agent."

From Satellites to Medicine


Currently, pathologists analyze tissue samples from a patient who is undergoing cancer surgery and still under anesthesia in a process called intraoperative frozen section analysis. Several resections may be needed during a procedure as surgeons try to reach tissue with clear, or noncancerous, margins. In some cases, cancer cells cannot be sampled or detected during surgery, resulting in additional surgery.

Hyperspectral imaging, originally used in satellite imagery, orbiting telescopes and other applications, goes beyond what the human eye can see as cells are examined under ultraviolet and near-infrared lights at micrometer resolution. By analyzing how cells reflect and absorb light across the electromagnetic spectrum, experts can get a spectral image of cells that is as unique as a fingerprint.

Fei said the CPRIT grant will support his research group's ongoing efforts to "train" the microscope to recognize cancer with the help of images of cancerous and noncancerous cells in an extensive database.

"If we have a large database that knows what is normal tissue and what is cancerous tissue, then we can train our system to learn the features of the spectra," Fei said. "Once it's trained, the smart device can predict whether a new sample is a cancerous tissue or not. That's how machine learning can help with a cancer diagnosis."

Fei said the technology should be able to provide nearly instant results, which could significantly reduce surgery time and cost. Each frozen resection evaluation under current procedures can take 30 to 45 minutes. According to an analysis in the April 18, 2018, issue of JAMA Surgery, the average cost of the operating room is estimated to be $36 per minute, so each 30-minute frozen section analysis adds more than $1,000 to the cost of surgery. In many cases, multiple evaluations are needed, which further prolongs the surgical time and increases the costs.

Less time in the operating room also could decrease risks for patients because they would not need to spend as much time under anesthesia.

Cancer Research at UTD


CPRIT has awarded $2.4 billion in grants to Texas research institutions and organizations since the institute was formed in 2008. Including Fei's new award, 11 UT Dallas researchers have received 17 CPRIT grants totaling more than $14.6 million.

"We hope that this technology can help surgeons better detect cancer during surgery, reduce operating time, lower medical costs and save lives."

Dr. Baowei Fei, the Cecil H. and Ida Green Chair in Systems Biology Science in the Erik Jonsson School of Engineering and Computer Science

Recent grants to UT Dallas have supported the establishment of a small-animal imaging facility and separate research to develop a noninvasive imaging technique to detect glioblastoma, an aggressive form of brain cancer.

"Dr. Fei is part of a well-established group of UT Dallas faculty who are engaged in state-of-the-art research in cancer detection and therapeutics," said Dr. Joseph Pancrazio, vice president for research and professor of bioengineering at UT Dallas. "He is a nationally recognized leader in biomedical engineering, and we're excited to see how his research on advanced imaging analysis tools will improve outcomes for cancer patients."
-end-
The research in the journal Cancers was supported in part by a pilot project under the National Institutes of Health award number P30CA138292. Other UT Dallas authors of the study are Martin Halicek, a visiting doctoral student, and James Dormer, a research engineer in bioengineering. Co-authors also include UT Southwestern Medical Center otolaryngology surgeons Dr. Larry Myers and Dr. Baran Sumer, and Dr. Amy Chen and Dr. James Little at Emory University. Fei has a joint appointment as a professor of radiology at UT Southwestern.

University of Texas at Dallas

Related Cancer Cells Articles:

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
Brain cancer: Typical mutation in cancer cells stifles immune response
The exchange of a single amino acid building block in a metabolic enzyme can lead to cancer.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.
An index measures similarity between cancer cells and pluripotent stem cells
The new methodology measures tumor aggressiveness and the risk of relapse, helping doctors plan treatment, according to Brazilian scientists authors of a paper published in a special issue of the journal Cell.
More Cancer Cells News and Cancer Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.