Nav: Home

Stanford researchers have developed a gel-like fluid to prevent wildfires

September 30, 2019

A preventive treatment developed by Stanford researchers could greatly reduce the incidence and severity of wildfires. The approach, outlined Sept. 30 in Proceedings of the National Academy of Sciences, involves an environmentally benign gel-like fluid that helps common wildland fire retardants last longer on vegetation.

Applied to ignition-prone areas, these materials retain their ability to prevent fires throughout the peak fire season, even after weathering that would sweep away conventional fire retardants. By stopping fires from starting, such treatments can be more effective and less expensive than current firefighting methods.

"This has the potential to make wildland firefighting much more proactive, rather than reactive," said Eric Appel, the study's senior author and an assistant professor of materials science and engineering. "What we do now is monitor wildfire-prone areas and wait with bated breath for fires to start, then rush to put them out."

A century of fire suppression plus hotter, drier weather has intensified the destructive power of wildfires and lengthened the season of threat. While the 2019 season has been relatively calm in the West so far, the past two years have brought four of the 20 largest and eight of the 20 most destructive wildfires in California's history. Across the country, federal firefighting costs in 2018 came to more than $3 billion - the highest total ever.

Long-lasting, environmentally benign

Wildfires are a critical part of some ecosystems, but the vast majority in the U.S. are human-caused. Many of them originate in the same hotspots, such as roadsides, campgrounds and remote electrical lines, time after time. Treating these areas prophylactically could provide a highly targeted approach to wildfire prevention, but, until now, long-lasting and environmentally benign materials have not been available.

Aside from clearing and burning potential fuels, wildfire management generally revolves around fire suppressants and retardants, with many suppressants used as short-term retardants. To fight active fires, crews use suppressants, such as gels that carry water and superabsorbent polymers found in diapers. These gels are frequently used as short-term retardants on buildings in the path of encroaching fires, but they lose effectiveness once the water entrapped in them evaporates - something that often occurs in less than an hour during normal wildland fire conditions.

The most widely deployed commercial wildland fire retardant formulations use ammonium phosphate or its derivatives as the active fire-retarding component. However, these formulations only hold retardants on vegetation for short periods of time, so they can't be used preventively. By contrast, the Stanford-developed technology - a cellulose-based gel-like fluid - stays on target vegetation through wind, rain and other environmental exposure.

"You can put 20,000 gallons of this on an area for prevention, or 1 million gallons of the traditional formulation after a fire starts," said study lead author Anthony Yu, a PhD student in materials science and engineering at Stanford.

Complete fire prevention

The researchers have worked with the California Department of Forestry and Fire Protection (CalFire) to test the retardant materials on grass and chamise - two vegetation types where fire frequently starts. They found the treatment provides complete fire protection even after half an inch of rainfall. Under the same conditions, a typical commercial retardant formulation provides little or no fire protection. The researchers are now working with the California Department of Transportation and CalFire to test the material on high-risk roadside areas that are the origin of dozens of wildfires every year.

"We don't have a tool that's comparable to this," said Alan Peters, a CalFire division chief in San Luis Obispo who monitored some of the test burns. "It has the potential to definitely reduce the number of fires."

The Stanford-developed treatment contains only nontoxic starting materials widely used in food, drug, cosmetic and agricultural products. The unique properties of these gel-like retardant fluids allow them to be applied using standard agricultural spraying equipment or from aircraft. While it washes away slowly, providing the ability to protect treated areas against fire for months, the materials eventually degrade.

"We hope these new materials can open the door to identifying and treating high-risk areas to protect people's lives and livelihoods," said Appel.
-end-
Appel is also an affiliate of the Stanford Woods Institute for the Environment. Stanford co-authors include postdoctoral researcher Hector Lopez Hernandez; graduate students Andrew Kim, Lyndsay Stapleton and Doreen Chan; and Craig Criddle, a professor of civil and environmental engineering, a senior fellow at the Woods Institute for the Environment, director of Stanford's Codiga Resource Recovery Center, a member of Bio-X and an affiliate of the Precourt Institute for Energy. Additional co-authors are from California Polytechnic State University, San Luis Obispo, and the Desert Research Institute.

Yu and Appel are inventors on a patent describing the technology reported in this study.

Stanford University

Related Wildfires Articles:

Wildfires cause bird songs to change
A new study in The Auk: Ornithological Advances suggests that wildfires change the types of songs sung by birds living in nearby forests.
Recent Australian wildfires made worse by logging
Logging of native forests increases the risk and severity of fire and likely had a profound effect on the recent, catastrophic Australian bushfires, according to new research.
Study synthesizes what climate change means for Northwest wildfires
A synthesis study looks at how climate change will affect the risk of wildfires in Washington, Oregon, Idaho and western Montana.
Climate change increases the risk of wildfires confirms new review
Human-induced climate change promotes the conditions on which wildfires depend, increasing their likelihood -- according to a review of research on global climate change and wildfire risk published today.
Fire blankets can protect buildings from wildfires
Wrapping a building in a fire-protective blanket is a viable way of protecting it against wildfires, finds the first study to scientifically assess this method of defense.
Stanford researchers have developed a gel-like fluid to prevent wildfires
Scientists and engineers worked with state and local agencies to develop and test a long-lasting, environmentally benign fire-retarding material.
UCI team uses machine learning to help tell which wildfires will burn out of control
An interdisciplinary team of scientists at the University of California, Irvine has developed a new technique for predicting the final size of a wildfire from the moment of ignition.
New wildfire models to predict how wildfires will burn in next 20 minutes
While it's impossible to predict just where the next wildfire will start, new Department of Defense-sponsored research from BYU's Fire Research Lab is getting into the microscopic details of how fires initiate to provide more insight into how wildfires burn through wildland fuels.
Tiny airborne particles from wildfires have climate change implications
Wildfires are widespread across the globe. They occur in places wherever plants are abundant -- such as the raging fires currently burning in the Brazilian Amazon.
How California wildfires can impact water availability
A new study by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) uses a numerical model of an important watershed in California to shed light on how wildfires can affect large-scale hydrological processes, such as stream flow, groundwater levels, and snowpack and snowmelt.
More Wildfires News and Wildfires Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.