Venus might be habitable today, if not for Jupiter

September 30, 2020

Venus might not be a sweltering, waterless hellscape today, if Jupiter hadn't altered its orbit around the sun, according to new UC Riverside research.

Jupiter has a mass that is two-and-a-half times that of all other planets in our solar system -- combined. Because it is comparatively gigantic, it has the ability to disturb other planets' orbits.

Early in Jupiter's formation as a planet, it moved closer to and then away from the sun due to interactions with the disc from which planets form as well as the other giant planets. This movement in turn affected Venus.

Observations of other planetary systems have shown that similar giant planet migrations soon after formation may be a relatively common occurrence. These are among the findings of a new study published in the

Scientists consider planets lacking liquid water to be incapable of hosting life as we know it. Though Venus may have lost some water early on for other reasons, and may have continued to do so anyway, UCR astrobiologist Stephen Kane said that Jupiter's movement likely triggered Venus onto a path toward its current, inhospitable state.

"One of the interesting things about the Venus of today is that its orbit is almost perfectly circular," said Kane, who led the study. "With this project, I wanted to explore whether the orbit has always been circular and if not, what are the implications of that?"

To answer these questions, Kane created a model that simulated the solar system, calculating the location of all the planets at any one time and how they pull one another in different directions.

Scientists measure how noncircular a planet's orbit is between 0, which is completely circular, and 1, which is not circular at all. The number between 0 and 1 is called the eccentricity of the orbit. An orbit with an eccentricity of 1 would not even complete an orbit around a star; it would simply launch into space, Kane said.

Currently, the orbit of Venus is measured at 0.006, which is the most circular of any planet in our solar system. However, Kane's model shows that when Jupiter was likely closer to the sun about a billion years ago, Venus likely had an eccentricity of 0.3, and there is a much higher probability that it was habitable then.

"As Jupiter migrated, Venus would have gone through dramatic changes in climate, heating up then cooling off and increasingly losing its water into the atmosphere," Kane said.

Recently, scientists generated much excitement by discovering a gas in the clouds above Venus that may indicate the presence of life. The gas, phosphine, is typically produced by microbes, and Kane says it is possible that the gas represents "the last surviving species on a planet that went through a dramatic change in its environment."

For that to be the case, however, Kane notes the microbes would have had to sustain their presence in the sulfuric acid clouds above Venus for roughly a billion years since Venus last had surface liquid water -- a difficult to imagine though not impossible scenario.

"There are probably a lot of other processes that could produce the gas that haven't yet been explored," Kane said.

Ultimately, Kane says it is important to understand what happened to Venus, a planet that was once likely habitable and now has surface temperatures of up to 800 degrees Fahrenheit.

"I focus on the differences between Venus and Earth, and what went wrong for Venus, so we can gain insight into how the Earth is habitable, and what we can do to shepherd this planet as best we can," Kane said.
-end-


University of California - Riverside

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.