New study reveals how reptiles divided up the spoils in ancient seas

September 30, 2020

While dinosaurs ruled the land in the Mesozoic, the oceans were filled by predators such as crocodiles and giant lizards, but also entirely extinct groups such as ichthyosaurs and plesiosaurs.

Now for the first time, researchers at the University of Bristol have modelled the changing ecologies of these great sea dragons.

Mesozoic oceans were unique in hosting diverse groups of fossil reptiles, many of them over 10 metres long.

These toothy monsters fed on a variety of fishes, molluscs, and even on each other. Yet most had disappeared by the end of the Cretaceous, 66 million years ago, when the dinosaurs also died out. There are still some marine crocodiles, snakes and turtles today, but sharks, seals, and whales took over these ecological roles.

In a new study, completed when she was studying for the MSc in Palaeobiology at the University of Bristol's School of Earth Sciences, Jane Reeves, now a PhD student at the University of Manchester, used modern computational methods to explore how all these marine reptiles divided up the spoils.

Jane said: "It's difficult to work out the ecology and function of fossil animals but we decided to focus mainly on their feeding and swimming styles. I tracked down information on 371 of the best-known Mesozoic marine tetrapods, and coded each one for 35 ecological traits, including body size, diet, likely hunting style, tooth type, presence or absence of armour, limb shape and habitat."

The numerical analysis showed that all these marine reptiles could be divided into just six ecological categories linking how they moved, where they lived, and how they fed: pursuit predators that chased their prey, ambush predators that lurked and waited for the prey to swim past (two groups, one in deep water, one in shallow), a fourth group of reptiles that could still walk on land, shallow-water shell-crushers and foragers, and marine turtles with a variety of life modes.

Professor Mike Benton, who co-supervised the study, said: "A problem with studies of form and function of fossils is that we have to be careful in reconstructing the behaviour of ancient animals. But in Jane's study, she used ecological characters from the start where their function had already been established. For example, sharp pointy teeth mean fish-eating, whereas broad, flat teeth mean shell crushing."

Dr Ben Moon, another co-supervisor, said: "We knew that the different marine reptile groups came and went through the 186 million years of the Mesozoic.

"I'm especially interested in ichthyosaurs, and we wanted to test an idea that they had migrated through ecospace during the Mesozoic. Jane's study shows definite movement through time from being semi-terrestrial at the beginning of the Triassic to a wide range of ecologies, including ambush hunting, and finally pursuit predation in the Jurassic and Cretaceous."

Dr Tom Stubbs, another co-supervisor, said: "We also wanted to test whether all these animals were competing with each other. But in fact, they seem to have avoided competition.

"For example, after a substantial extinction of marine reptiles around the end of the Triassic, the surviving ichthyosaurs and plesiosaurs showed considerable conservatism. They didn't expand their ecological roles at all, and many niches were left empty until new groups of crocodiles and turtles emerged later in the Jurassic to take over these roles."

Jane Reeves added: "It was a great experience being able to study a large variety of creatures, and to then reconstruct the ecological lifestyles of extinct animals from just their fossils.

"You do have to be very careful in doing these kinds of studies, not to make any unfounded assumptions. We know animals can be opportunistic, and don't always behave exactly how we think they should, but we're confident that the data we collected reflects the most common, day-to-day, behaviours of each animal. These results give us a great insight into what was really happening under the surface of the Mesozoic seas."
-end-
This research was part funded by the Natural Environment Research Council (NERC) and the European Research Council (ERC).

University of Bristol

Related Dinosaurs Articles from Brightsurf:

Ireland's only dinosaurs discovered in antrim
The only dinosaur bones ever found on the island of Ireland have been formally confirmed for the first time by a team of experts from the University of Portsmouth and Queen's University Belfast, led by Dr Mike Simms, a curator and palaeontologist at National Museums NI.

Baby dinosaurs were 'little adults'
Paleontologists at the University of Bonn (Germany) have described for the first time an almost complete skeleton of a juvenile Plateosaurus and discovered that it looked very similar to its parents even at a young age.

Bat-winged dinosaurs that could glide
Despite having bat-like wings, two small dinosaurs, Yi and Ambopteryx, struggled to fly, only managing to glide clumsily between the trees where they lived, according to a new study led by an international team of researchers, including McGill University Professor Hans Larsson.

Some dinosaurs could fly before they were birds
New research using the most comprehensive study of feathered dinosaurs and early birds has revised the evolutionary relationships of dinosaurs at the origin of birds.

Tracking Australia's gigantic carnivorous dinosaurs
North America had the T. rex, South America had the Giganotosaurus and Africa the Spinosaurus - now evidence shows Australia had gigantic predatory dinosaurs.

Ancient crocodiles walked on two legs like dinosaurs
An international research team has been stunned to discover that some species of ancient crocodiles walked on their two hind legs like dinosaurs and measured over three metres in length.

Finding a genus home for Alaska's dinosaurs
A re-analysis of dinosaur skulls from northern Alaska suggests they belong to a genus Edmontosaurus, and not to the genus recently proposed by scientists in 2015.

Can we really tell male and female dinosaurs apart?
Scientists worldwide have long debated our ability to identify male and female dinosaurs.

In death of dinosaurs, it was all about the asteroid -- not volcanoes
Volcanic activity did not play a direct role in the mass extinction event that killed the dinosaurs, according to an international, Yale-led team of researchers.

Discriminating diets of meat-eating dinosaurs
A big problem with dinosaurs is that there seem to be too many meat-eaters.

Read More: Dinosaurs News and Dinosaurs Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.