Nav: Home

Coral's resilience to warming may depend on iron

September 30, 2020

How well corals respond to climate change could depend in part on the already scarce amount of iron available in their environment, according to a new study led by Penn State researchers. The study reveals that the combination of hot water temperatures and low iron levels compromises the algae that live within coral cells, suggesting that limited iron levels--which could decline with warming ocean waters--could exacerbate the effects of climate change on corals.

"Corals are the foundation for one of the most important ecosystems in the world," said Todd LaJeunesse, professor of biology at Penn State. "They support significant amounts of biodiversity, protect our shorelines from storms, provide habitat for our fisheries, and boost our economies with their opportunities for tourism. Climate change affects not only the coral, but also their symbiotic microalgae and the partnership between them. In this study, we explored two aspects of climate change--warming waters and altered amounts of trace metals like iron--on the algae."

The researchers previously found that the photosynthetic microalgae that live within coral cells--which provide up to 90 % of the coral's daily nutritional needs through photosynthesis--have very high iron demands.

"In this study, we found that limiting the available iron lowered the heat tolerances of two species of microalgae, which potentially could have cascading effects on the coral and on the reef ecosystem," said Hannah Reich, a graduate student in biology at Penn State at the time of the research and an author of the study.

In their study, which appears online Sept. 30 in the Journal of Phycology, the researchers investigated the effects of high water temperatures and limited iron availability on the growth of two species of microalgae cultured in the lab--one species typically found in tropical waters and one from more temperate areas. At high temperatures and limited iron, both species grew poorly compared to at moderate temperatures and normal iron levels.

"High temperatures increase metabolic demands, which forces the microalgae to work harder function properly," said Reich. "It also increases dependence on processes that require iron, like photosynthesis and assimilating other nutrients. We found that under high temperatures, the microalgae needed more than five times as much iron to reach typical, exponential growth rates."

Limited iron availability at high temperatures also compromised the photosynthetic ability of the algae, reducing their efficiency, which the researchers think contributes to the reduced growth under these conditions. Additionally, warmer temperatures affected the relative amounts of trace metals within the algae, known as their metal profiles.

"These alterations could indicate differences in metal usage, likely affecting the biological functions in which they are used," said Reich. "Notably, with limited iron, the more tropical species grew better and had less compromised photosynthetic ability at high temperatures and a larger reserve of many trace metals."

"Our results also highlight that trace metal profiles could be a metric with which to assess heat sensitivity or tolerance among symbiont species," said LaJeunesse. "Moreover, access to higher concentrations of trace metals may improve a coral's tolerance of thermal stress."

In the future, the researchers plan to explore how trace metal requirements change in different conditions in the field, and to explore the impacts of limited iron and warming waters on microalgae living within a host.

"While it is important to understand how access to iron supplies can impact the ability of corals to respond to climate change stressors, there is still a dire need to reduce carbon dioxide emissions to combat the climate crisis," added Reich.
-end-
In addition to Reich, now a postdoctoral researcher at the University of Rhode Island, and LaJeunesse, the research team includes Wan-Chen Tu, Irene Rodriguez, Yalan Chou, and Tung-Yuan Ho at Academia Sinica and Elise Keister and Dustin Kemp at the University of Alabama at Birmingham. This study is recognized as the Bold Award feature paper by the journal, who invites the winner of the Harold C Bold Award from the Phycological Society of America annual meeting to contribute a paper. Reich received several other outstanding presentation awards at regional and national scientific meetings for this work.

This research was made possible through the National Science Foundation East Asia and Pacific Summer Institute for U.S. Graduate Students (EAPSI) program. The program allowed Reich to travel to and work with collaborators at Academia Sinica in Taiwan, who had the necessary clean room facilities and expertise working with microalgae to reliably and accurately measure trace metals. Additional funding for this work was provided by the National Science Foundation, the Ministry of Science and Technology of Taiwan, the NASA Pennsylvania Space Grant Consortium, Academia Sinica, and the National Oceanic and Atmospheric Administration.

Penn State

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.